На международной конференции International Solid-State Circuits Conference, которая пройдет с 8 по 12 февраля в Сан-Франциско, корпорация Intel представит 15 докладов с описанием перспективных направлений своей деятельности. Кроме того, старший заслуженный инженер-исследователь корпорации Intel Марк Бор (Mark Bohr) сделает основной доклад на специальном пленарном заседании для приглашенных участников.
Марк Бор расскажет о начале новой эры создания однокристальных систем, или <систем-на-чипе> (System on Chip, SoC), для выпуска которых потребуется кардинально изменить технологии производства полупроводников и внедрить инновации для реализации закона Мура в следующем десятилетии. В течение недели будет представлено несколько презентаций. На них будут обсуждаться технологии, которые, согласно прогнозам, смогут расширить функциональные возможности однокристальных систем, включая радиоприемопередатчики и улучшенные графические подсистемы для мобильных устройств.
Intel будет вести более половины секций по микропроцессорам. Четыре доклада будут посвящены обсуждению новейших 45-нм процессоров, предназначенных для корпоративных пользователей.
Ниже приведена подробная информация о некоторых ключевых докладах и презентациях, посвященных исследованиям Intel.
<Системы-на-чипе> позволят закону Мура оставаться актуальным
<Новая эра масштабирования в мире однокристальных систем>
Марк Бор, заслуженный инженер-исследователь корпорации Intel, подразделение Technology and Manufacturing Group, директор подразделения Process Architecture and Integration
Пленарный доклад 1.3: 9 февраля, 10:35
Тенденция использования более миниатюрных транзисторов для создания микропроцессоров со все большим количеством ядер и более высокими рабочими частотами подходит к концу, т. к. корпорация Intel сосредоточилась на разработке решений, обладающих энергоэффективной производительностью и повышенной мобильностью. Бор обсудит кардинальные изменения в проектировании транзисторов и интегральных микросхем, необходимые для дальнейшей разработки новаторских микропроцессоров. Новая эра развития ИТ-технологий связана с созданием <однокристальных систем> (system-on-a-chip, SoC), и задачей будущего станет полная интеграция системы в одну единственную микросхему. Intel планирует использовать свой опыт проектирования микросхем, производственные мощности, передовые технологии и принципы закона Мура для создания нового вида специализированных продуктов с высокой степенью интеграции и поддержкой выхода в Интернет.
Инновационные технологии цифровой радиосвязи
для будущих <систем-на-чипе>
Будущие системы SoC будут оснащены гибкими встроенными приемопередатчиками, которые откроют новую эру мобильных телекоммуникаций. Для реализации принципа <связь в любом месте и в любое время> в платформу необходимо будет интегрировать дополнительные приемопередатчики (например, Wi-Fi, WiMAX, 3G, Bluetooth), которые занимают дополнительное пространство, потребляют электроэнергию и влияют на производительность системы. Исследователи Intel активно ищут пути для создания решений на базе технологий, позволяющих интегрировать в микросхему все больше радиокомпонентов, а также оптимизировать затраты и повысить производительность. Ученые Intel представят три промежуточных этапа разработки, чтобы наглядно продемонстрировать новые идеи, связанные с цифровыми приемопередатчиками, полностью совместимыми с SoC будущего.
<7-разрядный C-2C SAR АЦП 1,1 В 50 мВт 2,5 ГС/с с временным разделением на базе 45-нм технологии LP Digital>
Секция 4.2: 9 февраля, 14:00
В этом докладе будет подробно рассказано о новой технологии, предназначенной для систем радиосвязи в диапазоне 60 ГГц. Эта технология преобразует аналоговые сигналы в цифровые с помощью объединения нескольких менее сложных АЦП, называемых SAR АЦП, и распределения задачи между ними. Преимущества этого метода:
∙Пропускная способность передачи данных превышает 5 Гбит/с, что позволяет передавать фильмы DVD-качества по каналам беспроводной связи менее чем за 10 секунд.
∙Это первый 7-разрядный АЦП, полностью изготовленный по технологии CMOS, который может работать со скоростью 2,5 Гбит/с и позволяет существенно улучшить цифровые приемопередатчики с такими уровнями производительности.
∙Энергоэффективность сравнима с доступными сегодня современными АЦП, но точность существенно повышена.
<Дробный делитель частоты 4,75 ГГц с цифровой калибровкой зубцов на базе 45-нм технологии CMOS>
Секция 12.6: 10 февраля, 10:15
Обработка аналоговых радиосигналов часто по своей сути является неэффективной, т. к. требуется фильтрация для коррекции спектральных примесей (которые можно назвать частотной рассогласованностью). Фильтрация необходима из-за того, что для обеспечения хорошей чувствительности и устойчивой передачи данных требуются чистые сигналы гетеродина (local oscillator, LO). В предыдущих методиках использовалось множество индукторов, занимающих место, потребляющих электроэнергию и увеличивающих стоимость. В этом докладе впервые в отрасли будет показано, как можно использовать цифровые технологии для необходимого смещения частоты с помощью генератора, управляемого напряжением (voltage controlled oscillator, VCO), и калибровки цепей, чтобы добиться отличной чистоты сигнала гетеродина. Преимущества цифровых технологий:
∙Сокращение количества необходимых компонентов и, соответственно, освобождение дополнительного пространства на микросхеме.
∙Новаторская технология, использующая изменчивость времени задержки на логическом элементе, присущую 45-нм производственной технологии CMOS, для измерения и калибровки несоответствий.
<Трехмерный датчик температуры AZ 1,05 В 1,6 мВт 0,45°C с компенсацией паразитного сопротивления на базе 32-нм технологии CMOS>
Секция: 20.1: 10 февраля, 08:30
В этом докладе будет представлен первый датчик температуры для применения в микропроцессорах, выпускаемых по 32-нм технологии с диэлектриками high-k и металлическими затворами CMOS. Для измерения температуры над поверхностью всего многоядерного процессора устанавливают множество распределенных датчиков. Устройство управления процессором может использовать показания этих датчиков для передачи точной информации о температуре программным компонентам более высокого уровня для выполнения служебных операций и оптимизации. В эпоху многоядерных процессоров управление термальной системой и электропитанием во многом определяет производительность и энергоэффективность платформы. Преимущества этого достижения:
∙Совершенствование управления питанием процессора.
∙Возможность добиться максимальной надежности работы микропроцессора.
∙Ограничение утечки с помощью балансировки загрузки благодаря измерениям температуры во множестве критичных точек.
∙Увеличение срока службы компонентов процессора за счет снижения рабочей нагрузки.
∙Повышение точности идентификации и вмешательства благодаря большому количеству датчиков.
Улучшенные графические подсистемы для компактных мобильных устройств
Повышение энергоэффективности при выполнении наиболее высокопроизводительных и энергозатратных операций, таких как мультимедийные и графические приложения, обработка сигналов и вычисления SIMD, является важнейшим условием для работы систем с мобильными форм-факторами. SIMD (Single Instruction Multiple Data) - режим вычислений, в котором одна инструкция обрабатывает несколько элементов данных (например, все пиксели изображения). Размеры устройств постоянно уменьшаются, а в приложениях используется все более современная графика, поэтому необходимы усовершенствованные технологии, позволяющие выполнять больше вычислений SIMD и в то же время снизить энергопотребление. Сегодня схемы ускорения SIMD имеют высокие токи утечки и ограниченные возможности управления, а при уменьшении напряжения питания работают неустойчиво.
<Перестраиваемый 4-поточный ускоритель векторных вычислений SIMD с двойным напряжением питания до 300 мВ на базе 45-нм технологии CMOS>
Секция 14.6: 10 февраля, 16:15
В этом докладе представлен 45-нм прототип микросхемы ускорителя SIMD, который позволит воспроизводить самые современные мультимедийные материалы и видео на всех платформах, включая ноутбуки, MID и другие компактные устройства. Преимущества новой технологии:
∙В 10 раз более высокая энергоэффективность по сравнению с показателями сегодняшних продуктов со стандартными напряжениями питания.
∙Схемы с простым переходом на сверхнизкие напряжения питания (от 1,3 В до 230 мВ).
∙При снижении напряжения питания до 300 мВ энергоэффективность возрастает в 8 раз.
Ведущие в отрасли 45-нм процессоры для корпоративных пользователей
<45-нм 8-ядерный процессор Intel Xeon для корпоративных пользователей>
Секция 3,1: 9 февраля, 13:30
∙8-ядерный 16-поточный процессор Xeon для корпоративных пользователей на базе 45-нм производственной технологии 9M CMOS состоит из 2,3 млрд транзисторов.
∙В подсистеме ввода/вывода в каждом канале используется компенсация TX и RX, что позволяет достичь пропускной способности до 6,4 ГТ/сек.
<Семейство 45-нм процессоров с архитектурой Intel>
Секция 3.2: 9 февраля, 14:00
∙Будет представлено семейство процессоров с архитектурой Intel следующего поколения. Эти процессоры имеют до 8 ядер, построены на базе усовершенствованной микроархитектуры Core , оснащены кэш-памятью 3 уровня и двумя потоками SMT. Они выпускаются по 45-нм технологии с использованием диэлектриков high-k и металлических затворов CMOS.
∙В процессорах данного семейства реализованы согласованные двухточечные каналы связи. Они включают контроллер памяти, микроконтроллер управления питанием и мощные транзисторы.
∙<Система тактирования для динамического переключения частоты в четырехъядерном процессоре Itanium > 9 февраля, 15:15
∙Процессор Intel Itanium следующего поколения под кодовым наименованием содержит четыре ядра и системный интерфейс с шестью каналами Intel QuickPath Interconnect, а также четырехканальный интерфейс с памятью.
∙Из-за того что площадь кристалла составляет 700 мм2, а также из-за высокой степени интеграции в имеющейся системе тактирования были проблемы с энергопотреблением и компенсированием изменчивости.
∙Данный доклад посвящен решению этих проблем. В нем объясняется, как решение для управления напряжением питания и частотой позволяет оптимизировать мощность процессора и термальные характеристики.
∙<45-нм 6-ядерный процессор Xeon : более 1 млн единиц при выполнении теста TPCC> Секция 3.8: 9 февраля, 16:45
∙Однокристальный 6-ядерный процессор Xeon состоит из 1,9 млрд транзисторов. Он изготавливается по 45-нм технологии 9M CMOS, имеет кэш-память второго уровня объемом 9 МБ и кэш-память третьего уровня объемом 16 МБ. При выполнении теста производительности TPCC система на базе 8 этих процессоров показала результат, превышающий 1 млн транзакций в минуту.
∙Цепи системной шины находятся в центре кристалла, чтобы уменьшить задержки ввода/вывода.