Новый рентгеновский телескоп сможет предоставить более подробную информацию об остатках сверхновых, что в перспективе поможет узнать больше об эволюции звезд.
NASA запустило прототип телескопа для изучения рентгеновского излучения, испущенного Кассиопеей А – расширяющимися остатками взорвавшейся звезды. Micro-X (High-Resolution Microcalorimeter X-ray Imaging Rocket) был запущен 22 июля на борту суборбитальной ракеты, также известной, как звучащая ракета, и успешно протестировал свои датчики.
«По сравнению со спутниками на орбите, время полета звучащей ракеты очень коротко, так что вам нужно получить, как можно больше света, чтобы добыть необходимые данные, - говорит главный исследователь Енектали Фигероа-Феличиано, доцент физики в Северо-Западном университете в Эванстоне, штат Иллинойс. – В небе есть всего пару источников рентгеновских лучей, достаточно ярких для нескольких минут наблюдательного времени, предоставляемого нам такими полетами, и Кассиопея А – один из самых ярких. Наше исследование будет основываться на уже имеющихся знаниях об остатках сверхновых, как они взрывались и развивались, и мы также сможем получить новые данные об истории Кассиопеи А».
Micro-X – первый аппарат, оснащенный массивом рентгеновских микрокалориметров переходного края, отправленный в космос. Эти сенсоры действуют, как высокочувствительные термометры, что делает их идеальными датчиками для рентгеновского телескопа. Микрокалориметр состоит из трех основных частей: абсорбера, впитывающего свет и конвертирующего его в тепло, термистора, изменяющего собственное сопротивление в зависимости от температурных изменений, и радиатора, охлаждающего микрокалориметр.
На Micro-X также установлен конденсатор, охлаждающий датчик до -272,7 градуса по Цельсию (на 0,072 градуса по Цельсию выше абсолютного нуля). Когда инструмент регистрирует рентгеновское излучение, энергия света конвертируется в тепло. Из-за этого, температуре слегка повышается, а конденсатор охлаждает датчик до его изначальной температуры. Энергия каждого рентгеновского излучения может быть определена изменением температуры.
Один из многих вопросов, интересующих ученых в плане использования данных, – являются ли температуры газов, выброшенных во время взрыва звезды, одинаковыми для железа и кремния – двух элементов, ранее изученных рентгеновской обсерваторией «Чандра». Непосредственно такой анализ было невозможно провести посредством спектрометров «Чандры».
Micro-X во время вибрационных испытаний в NASA. Такие тесты помогают удостовериться в том, что телескоп может выдержать перегрузки во время полета на ракете / NASA
Micro-X во время вибрационных испытаний в NASA. Такие тесты помогают удостовериться в том, что телескоп может выдержать перегрузки во время полета на ракете / NASA
«В случае «Чандры», разные регионы остатков сверхновой перекрывают друг друга в спектрометре, - говорит Ф. Скотт Портер, астрофизик Центра космических полетов Годдарда в Гринбелте, штат Мэриленд, также участвующий в миссии. – Micro-X отличается, т.к. может захватить каждый отдельный фотон в его поле зрения, точно определить энергию и собрать все в спектр».
Информацию, собранную Micro-X, также можно будет использовать, чтобы ответить на вопрос о том, сколько кислорода осело в Кассиопее А, а также провести исследование других элементов в остатках и измерить скорость кольцеобразного выброса из взорвавшейся звезды.
Одним из аспектов исследования, который был недоступен до Micro-X, было измерение слабых спектральных линий. Теперь же эти наблюдения помогут ученым узнать, какие газы присутствуют в остатках, и каковы их скорость и направление. Это стало возможным, так как свет от источников движется к или от нас, в следствие чего создает разницу в длинах волны, в зависимости от их скорости. Этот феномен известен, как эффект Допплера или допплеровское смещение. И миссия Micro-X, и использование сенсоров переходного края продолжатся в будущем. Команда Micro-X планирует изучать и другие космические объекты.
«Во время будущих полетов, мы сможем смотреть на другие источники, такие как остатки сверхновых или галактические кластеры, - говорит Фигероа-Феличиано. – Мы даже задумались об использовании этого типа ракеты для изучения темной материи».
Сенсоры переходного края также будут использоваться в грядущих орбитальных миссиях. Космический телескоп «Афина» Европейского космического агентства, который планируется запустить в начале 2030-х, будет оснащен массивом примерно в 5 тысяч пикселей, что будет почти в 40 раз больше, чем 128-пиксельный детектор Micro-X. «Афина» будет изучать газовые структуры, такие как группы галактик, а также проведет перепись черных дыр.
По информации https://naked-science.ru/article/sci/nasa-zapuskaet-novyy-rentgenovskiy