Японские физики впервые пронаблюдали «живьем» предсказанное теоретиками рождение радиоактивных изотопов при ударе молнии. Статья опубликована в журнале Nature.
Молнии являются естественными ускорителями частиц. Лавины релятивистских убегающих электронов, которые развиваются в электрических полях в грозовых облаках, генерируют тормозное гамма-излучение, которые обнаруживаются наземными, космическими и летающими обсерваториями. Энергия гамма-квантов достаточно велика, чтобы они могли инициировать атмосферные фотоядерные реакции, продуктами которых являются нейтроны и позитроны (последние образуются при β-распаде рождающихся радиоактивных изотопов). Однако точных данных наблюдений, подтверждавших это, до сих пор не было.
Подтвердить наличие продуктов фотоядерных реакций, происходящих при грозовом разряде удалось группе японских физиков под руководством Теруаки Эното (Teruaki Enoto). Во время грозы 6 февраля 2017 года четыре детектора, установленные на АЭС «Касивадзаки-Карива», которая находилась на расстоянии 0,5-1,7 километра от молнии, одновременно зарегистрировали интенсивную вспышку гамма-излучения, которая длилась около 200 миллисекунд. Затем, в течение минуты после основной вспышки, наблюдалось послесвечение в гамма-диапазоне, которое сопровождалось регистрацией излучения на линии около 0,511 МэВ.
Данные говорят о том, что источник послесвечения в гамма-диапазоне отличается от источника основной части гамма-квантов. Кроме того, регистрируемое излучение на линии 0,511 МэВ соответствует процессу аннигиляции электрон-позитронной пары. Механизм образования позитронов при грозовом разряде заключается в инициации атмосферных фотоядерных реакций 14N + γ → 13N + n и 16O + γ → 15O + n, в ходе которых рождаются нестабильные изотопы кислорода и азота, которые в дальнейшем претерпевают β+-распад. Быстрые нейтроны, родившиеся в фотоядерных реакциях, постепенно теряют свою энергию за счет множественных упругих рассеяний с ядрами атомов атмосферных газов, в частности азота. При этом процессе 96 процентов нейтронов исчезают в ходе реакции 14N + n → 14C + p, которая не сопровождается испусканием гамма-квантов, а остальные четыре процента нейтронов претерпевают радиационный захват атмосферным азотом или веществом поверхности Земли, при этом ядра, которые захватывают нейтрон, излучают гамма-кванты, например в ходе реакции 14N + n → 15N + γ. Теоретическая скорость захвата нейтронов и смоделированные с учетом атмосферы, местоположения и энергетического разрешения детекторов спектры гамма-излучения согласуются с наблюдаемыми данными.
На Земле известно только два пути природного происхождения изотопов углерода. Так, например, стабильный изотоп 13C был создан в ходе звездного нуклеосинтеза и находился в составе протосолнечной туманности, а нестабильный изотоп 14C образуется в атмосфере благодаря космическим лучам. Атмосферные фотоядерные реакции, вызванные молнией, представляют собой ранее неизвестный канал для генерации на Земле изотопов углерода, азота и кислорода (13C, 14C, 13N, 15N и 15O), кроме того изотопы 13N и 15O позволяют развить новую методику изучения молний при помощи регистрации образующихся при разряде позитронов наземными детекторами.
Ранее мы рассказывали о том, как ракеты помогли увидеть движение грома, почему океанские молнии полюбили бить вдоль судоходных линий и каким образом столкновение с грунтом оказалось способно порождать «ударные молнии».
По информации https://nplus1.ru/news/2017/11/24/radioactive-isotopes-from-lightning