Портал | Содержание | О нас | Пишите | Новости | Голосование | Топ-лист | Дискуссия Rambler's Top100

TopList Яндекс цитирования

НОВОСТИ
"РУССКОГО ПЕРЕПЛЕТА"

ЛИТЕРАТУРА

Новости русской культуры

Афиша

К читателю

Содержание

Публицистика

"Курск"

Кавказ

Балканы

Проза

Поэзия

Драматургия

Искания и размышления

Критика

Сомнения и споры

Новые книги

У нас в гостях

Издательство

Книжная лавка

Журнальный зал

ОБОЗРЕНИЯ

"Классики и современники"

"Слово о..."

"Тайная история творений"

"Книга писем"

"Кошачий ящик"

"Золотые прииски"

"Сердитые стрелы"

КУЛЬТУРА

Афиша

Новые передвжиники

Фотогалерея

Музыка

"Неизвестные" музеи

Риторика

Русские храмы и монастыри

Видеоархив

ФИЛОСОФИЯ

Современная русская мысль

Искания и размышления

ИСТОРИЯ

История России

История в МГУ

Слово о полку Игореве

Хронология и парахронология

Астрономия и Хронология

Альмагест

Запечатленная Россия

Сталиниана

ФОРУМЫ

Дискуссионный клуб

Научный форум

Форум "Русская идея"

Форум "Курск"

Исторический форум

Детский форум

КЛУБЫ

Пятничные вечера

Клуб любителей творчества Достоевского

Клуб любителей творчества Гайто Газданова

Энциклопедия Андрея Платонова

Мастерская перевода

КОНКУРСЫ

За вклад в русскую культуру публикациями в Интернете

Литературный конкурс

Читательский конкурс

Илья-Премия

ДЕТЯМ

Электронные пампасы

Фантастика

Форум

АРХИВ

Текущий

2003

2002

2001

2000

1999

Фотоархив

Все фотоматериалы


Новости
"Русский переплет" зарегистрирован как СМИ. Свидетельство о регистрации в Министерстве печати РФ: Эл. #77-4362 от
5 февраля 2001 года. При полном или частичном использовании
материалов ссылка на www.pereplet.ru обязательна.

Тип запроса: "И" "Или"

30.05.2018
20:05

В Перу на плато Наска обнаружены неизвестные ранее геоглифы

30.05.2018
19:01

"СКРИПАЛЬ "нервно курит в сторонке"." - новое в обозрении Маркса Тартаковского

30.05.2018
17:01

Проект «Ярило» нацелен на исследование Солнца

30.05.2018
16:51

Физики впервые использовали квантовое "облако" для просчета опытов

30.05.2018
16:48

Ученые поймали "морского конька" в самых беспокойных "звездных яслях"

30.05.2018
16:45

Ученые воссоздают процесс поглощения звезды черной дырой

30.05.2018
16:39

Физики получили четвертый чистый ферромагнетик

30.05.2018
16:34

Астрономы описали проблемы инопланетной космонавтики

30.05.2018
16:22

Японские ученые, используя суперкомпьютер K Computer, предсказали возможность существования экзотической элементарной частицы "Di-Omega"

30.05.2018
16:19

Российские ученые опровергли миф о живительной силе серебра

30.05.2018
16:16

В Италии нашли старейшее дерево Европы

30.05.2018
16:12

Ученые изобрели реальный конденсатор потока, предназначенный не для путешествий во времени

30.05.2018
16:07

Обнаружена одна из самых массивных нейтронных звезд

30.05.2018
15:58

Ученые создали «фотосинтетический двигатель» для искусственных клеток

30.05.2018
15:52

Физики впервые смогли разделить воду на две разные жидкости

30.05.2018
15:48

Астрономы обнаружили шесть необычных галактик, в которых, возможно, вообще нет звезд

30.05.2018
15:41

ИИ распознает человека по следам

    Команда британских и испанских разработчиков предложила метод распознавания человека по его походке. Нейросеть, основанная на методе глубокого остаточного обучения, позволяет распознавать человека по пространственным и временным характеристикам его следа практически со стопроцентной точностью. Об этом сообщается в статье, опубликованной в IEEE Transactions on Pattern Analysis and Machine Intelligence.

    Традиционно для авторизации и ограничения доступа используются данные или средства, доступные узкому кругу лиц: ключи, пароли, токены или специальные карточки. Однако пароль может быть разгадан, карточка — украдена, также в последнее время появляются методы подделки биометрических данных, индивидуальных для каждого конкретного человека: отпечаток пальца, сетчатка глаза и даже лицо. Поэтому появилась необходимость в более эффективной защите — в частности, требуются эффективные методы предоставления доступа только одному конкретному человеку.

    Один из типов биометрических данных, которые можно использовать в качестве идентификатора, — это индивидуальные характеристики человеческой походки. Такие характеристики разделяются на пространственные и временные: к первым относятся измерения точек соприкосновения стопы с опорой (разворот стопы, длина шага и его база, то есть положение поверхности стопы), а ко вторым — длительность различных (опорных и двигательных) фаз шага. Большое количество факторов, влияющих на индивидуальность походки, снижает вероятность ее копирования к минимуму; тем не менее, в реальной ситуации подобное распознавание может осложняться внешними факторами. Например, для того, чтобы компьютер мог оценить походку, можно использовать технологии компьютерного зрения, но необходимо будет убедиться в том, что объект наблюдения находится в полной видимости, что невозможно обеспечить при недостаточном освещении или многолюдности.

    Использовать для распознавания по походке снимки стопы предложили ученые под руководством Омара Костиллья-Рейеса (Omar Costilla-Reyes) из Манчестерского университета. Для разработки такого метода они собрали базу данных из более чем 20 тысяч снимков следов 120 людей, полученных при помощи 88 пьезоэлектрических датчиков, рассчитывающих величину давления, на основе чего создается тепловые карты его распределения в зависимости от фазы шага. Добровольцев, участвующих в сборе данных, просили надеть любую удобную обувь и продемонстрировать свою естественную походку.

    Для обучения системы распознавания с помощью собранных данных ученые натренировали глубокую нейросеть, основанную на методе остаточного обучения, позволяющем облегчить тренировку модели с большим количеством слоев (с большей глубиной), которые часто необходимы для эффективного распознавания изображений с большим количеством параметров. Недавно с помощью такого метода обучения научились предсказывать поведение собаки по ее походке.

    Модель проверили на трех датасетах разного размера, соответствующих различным ситуациям распознавания: проверка в аэропорту, проверка на рабочем месте и дома. Эффективность распознавания в зависимости от датасета (от самого маленького распознавания в аэропорту до данных, собранных «дома») составляла от 92,9 до 99,3 процента.

    Авторы отмечают, что, как и с большинством подобных моделей, эффективность их системы распознавания напрямую зависит от собранного датасета: узнать она может только тех людей, данные о которых у нее есть. Тем не менее, сбор данных с помощью напольных сенсоров и сторонних камер — гораздо более реальная задача, чем сбор отпечатков пальцев. Пока что непонятно, как разработанная модель будет справляться с возможными временными аномалиями походки, например, при перенесенном переломе или растяжении.

    Недавно компания Apple запатентовала способ распознавания пользователей по лицу и узору лицевых вен одновременно.

    По информации https://nplus1.ru/news/2018/05/29/footstep-recognition

    Обозрение "Terra & Comp".

Выскажите свое мнение на:

30.05.2018
15:37

Немцы представили авиадвигатель с поршневым мотором вместо газогенератора

30.05.2018
15:32

Qualcomm представила процессор для виртуальной и дополненной реальности

30.05.2018
15:28

В МГУ создадут нейронные сети для «Ноева ковчега»

<< 531|532|533|534|535|536|537|538|539|540 >>

НАУКА

Новости

Научный форум

Почему молчит Вселенная?

Парниковая катастрофа

Хронология и парахронология

История и астрономия

Альмагест

Наука и культура

2000-2002
Научно-популярный журнал Урания в русском переплете
(1999-200)

Космические новости

Энциклопедия космонавтика

Энциклопедия "Естествознание"

Журнальный зал

Физматлит

News of Russian Science and Technology

Научные семинары

НАУЧНЫЕ ОБОЗРЕНИЯ

"Физические явления на небесах"

"TERRA & Comp"

"Неизбежность странного микромира"

"Биология и жизнь"

ОБРАЗОВАНИЕ

Открытое письмо министру образования

Антиреформа

Соросовский образовательный журнал

Биология

Науки о Земле

Математика и Механика

Технология

Физика

Химия

Русская литература

Научная лаборатория школьников

КОНКУРСЫ

Лучшие молодые
ученые России

Для молодых биологов

БИБЛИОТЕКИ

Библиотека Хроноса

Научпоп

РАДИО

Читают и поют авторы РП

ОТДЫХ

Музеи

Игры

Песни русского застолья

Народное

Смешное

О НАС

Редколлегия

Авторам

О журнале

Как читать журнал

Пишут о нас

Тираж

РЕСУРСЫ

Поиск

Проекты

Посещаемость

Журналы

Русские писатели и поэты

Избранное

Библиотеки

Фотоархив

ИНТЕРНЕТ

Топ-лист "Русского переплета"

Баннерная сеть

Наши баннеры

НОВОСТИ

Все

Новости русской культуры

Новости науки

Космические новости

Афиша

The best of Russian Science and Technology

 

 


Если Вы хотите стать нашим корреспондентом напишите lipunov@sai.msu.ru

 

Редколлегия | О журнале | Авторам | Архив | Ссылки | Статистика | Дискуссия

Галерея "Новые Передвижники"
Пишите

© 1999, 2000 "Русский переплет"
Дизайн - Алексей Комаров

Русский Переплет
Rambler's Top100 TopList