Ю.Н. ЕФРЕМОВ, Е.Д. ПАВЛОВСКАЯ
ДАТИРОВКА "АЛЬМАГЕСТА" ПО СОБСТВЕННЫМ ДВИЖЕНИЯМ ЗВЕЗД
/Представлено академиком Б.В. Раушенбахом 31 Х 1985)
1. Дата составления и, следовательно, авторство звездного каталога, который Птолемей включил в состав "Альмагеста", уже более двух веков являются дискуссионными. В настоящее время чаша весов склоняется в пользу авторства Гиппарха, а не Птолемея [1, 2]. Проблема датировки каталога "Альмагест" приобрела новое значение после появления работ ряда авторов (см., например, [3, 4]), которые заключили, что события, относимые к античности, в действительности измышлены позднее, в 900-1650 гг. н.э. В данной работе сделана попытка определить дату создания каталога "Альмагест", используя собственные движения звезд, т.е. их перемещение по небесной сфере, отражающее в основном движение звезд в пространстве. Такую задачу впервые поставил Ю.А. Завенягин [5].
Несколько звезд из каталога "Альмагест" имеют столь большие собственные движения m, что изменения в конфигурации включающей их группы соседних звезд можно почувствовать уже на протяжении нескольких веков даже при низкой точности координат в "Альмагесте". Исходя из современных точных координат и собственных движений звезд, можно найти момент, в который эта конфигурация будет наиболее близка к данным "Альмагеста". Очевидно, это и будет эпоха каталога, т.е. время определения координат звезд в нем.
2. Выберем группу звезд, содержащую объекты с большим m
, координаты которых приводятся в каталоге "Альмагест" [6]
и в фундаментальном каталоге FK4 [7], наиболее точном
из современных. Вычислим всевозможные взаимные расстояния между звездами
группы по двум указанным каталогам и для каждой пары звезд найдем разность
D угловых расстояний в двух каталогах. Среднее
значение <D2> по всем звездам
группы в общем случае будет отлично от нуля, поскольку эпохи двух каталогов
различны и, кроме того, в каталоге "Альмагест" имеются случайные ошибки
координат, из-за которых рискованно опираться лишь на пару звезд, как это
сделано в работе [5]. Ошибками каталога FK4 для нашей
цели можно пренебречь. При пересчете координат звезд из каталога FK4 с
1950 г. на произвольную эпоху T с учетом только собственного
движения величина <D2> будет изменяться
и достигнет минимума в искомую нами эпоху каталога "Альмагест"
T0.
В общем случае зависимость <D2>
можно представить уравнением
<D2>= aT2+
bT+с, где коэффициент а зависит от дисперсии собственных движений
в данной группе; понятно, что, если дисперсия равна нулю, вместо параболы
будет прямая, параллельная оси Т.
Поскольку значение функции <D2> в минимуме, <D2>(T0), зависит только от ошибок координат звезд в каталоге "Альмагест", то, зная <D2>(T0), можно вычислить эти ошибки. В группе из п звезд будет С2n значений величины D2. Выберем из них независимые оценки уклонений расстояний звезд в каталоге "Альмагест" от их расстояний в каталоге FK4, т.е. такие D2, при вычислении которых каждая звезда спользуется только один раз. Таких значений будет не менее n/2. Если предположить, что ошибки определения долготы l и широты b звезд в каталоге "Альмагест" одинаковы, легко вычислить ошибку определения координат e(l,b). Аналогичным способом, по-разному группируя те же n звезд, получим ряд оценок e(l,b). Они не являются независимыми, и поэтому вместо осреднения мы выбираем из них максимальную и будем считать ее оценкой локальной ошибки определения координат в каталоге "Альмагест". Возможные систематические ошибки координат всей группы не влияют на наши выводы.
Итак, предлагаемый нами метод позволяет определить эпоху создания каталога по абсциссе минимума функции <D2>(T0), а по его ординате - оценить точность координат звезд данной группы относительно друг друга.
3. Этот метод был проверен путем определения известных эпох нескольких каталогов - Улугбека, Тихо Браге и Гевелия, опубликованных в [8], и каталога [9] - первого, составленного на основе наблюдений с телескопом. Все вычисления проводились для двух групп, содержащих звезды с наибольшими собственными движениями - Арктур (a Boo, m~2") и o2 Эридана (o2 Eri, m~4"). Результаты приведены в табл. 1, в трех последних столбцах которой приведены известная из литературы T'0 и определенная нами T"0 - эпоха (год) соответствующих каталогов и ордината функции <D2>(T"0).
Последняя строка таблицы ярко демонстрирует значение использования телескопов,
которому напрасно противился Гевелий.
|
|
|
|
|
Улугбек | o2 Эридана | 1437 | 1440 | 0.0419 |
Тихо Браге | Арктура | 1580-1597 | 1550 | 0.0342 |
Гевелий | " | 1641-1687 | 1630 | 0.0034 |
[9] | " | 1735 | 1755 | 0.0000015 |
4. Для определения искомой нами эпохи T0 каталога
"Альмагест" вычисления были сначала проведены для тех же двух групп, а
затем каждая из них была разделена на две. Это позволило изучить влияние
случайных флуктуаций. Результаты приведены в табл. 2, в соответствующих
столбцах которой приведены название группы, число звезд в ней n,
ошибка определения координат e(l,b) и эпоха
T0.
Для примера на рис. 1 изображены зависимости <D2>(T)
для всех вариантов группы o2 Эридана.
Видно, что минимум везде резкий и глубокий. Аналогичные вычисления проделаны
для десятка других групп, содержащих звезды с собственными движениями m>0.8";
полученные результаты в пределах точности не противоречат приведенным выше.
|
|
|
|
|
Арктура | 11 | 14' | +250 | +310 ±360 |
Арктура | 6 | 17' | +250 | +250 ±490 |
Арктура | 6 | 14' | +250 | +180 ±410 |
o2 Эридана | 12 | 21' | +50 | +40 ±310 |
o2 Эридана | 7 | 20' | +150 | +210 ±370 |
o2 Эридана | 6 | 8' | -150 | -110 ±130 |
5. Зная ошибку e(l,b) в каждой группе, можно численным экспериментом изучить влияние случайных ошибок координат на определение T0. Смоделируем поправки к координатам звезд в каталоге "Альмагест", считая, что эти поправки распределены по нормальному закону со средним, равным нулю, и средней квадратической ошибкой e(l,b) в каждой группе, и определим соответствующее значение T0. Повторив эту процедуру 100 раз, построим распределение найденных оценок Соответствующие гистограммы изображены на рис. 2. В последнем столбце табл. 2 приводятся средние смоделированные значения <T0> и их средние квадратические ошибки. Формально вычисленное средневзвешенное значение <T0> с учетом полученных выше средних квадратических ошибок составляет +13 ±100, а общий для всех групп интервал с учетом средних квадратических ошибок эпох <T0> при моделировании - это I век до н.э. Весьма примечательным является также то обстоятельство, что вариант группы o2 Эридана с наименьшей ошибкой определения координат дает T0 = -110. Эти данные говорят, очевидно, о том, что положения звезд в каталоге "Альмагест" определялись в эпоху Гиппарха, а не Птолемея.
Во всяком случае, "Альмагест" создан 20-22 века назад в эпоху античности. Рис. 2 показывает, что вероятность его создания после Х века исчезающе мала. Об этом же говорит и содержащееся в "Альмагесте" значение вековым образом изменяющегося (о чем стало известно в XVIII веке) угла наклона земной оси к плоскости эклиптики, и многие другие данные [2]. Звездный каталог "Альмагест" не мог быть подделан даже лучшими астрономами средневековья. Коперник и Региомонтан в XV-XVI вв. сумели бы восстановить положения звезд для эпохи I в. до н.э., только если бы они располагали информацией, которую человечество приобрело лишь несколько веков спустя. Учета одной лишь прецессии недостаточно, а первые собственные движения были определены лишь в XVIII веке.
Мы признательны Ю.А. Завенягину, обратившему наше внимание на эту проблему, за полезное обсуждение, а также Д.Я. Мартынову и А.С. Шарову за сделанные замечания.
Государственный астрономический институт
им. П.К.Штернберга
Московского государственного университета
им.М.В. Ломоносова
Поступило
10 XII 1985
ЛИТЕРАТУРА
1. Newton R.R. - Quat. J. Roy. Astr. Soc., 1983, vol.
24, p. 27.
2. Rawlins D. Publ. Astr. Soc.Pacific,1982, vol.94,
p.359.
3. Фоменко А.Т. - ДАН, 1981, т. 258, с. 1326.
4. Фоменко А. Т. - ДАН, 1983, т. 268, с. 1322.
5. Голубцова Е.С., Завенягин ЮА. - Вопр. истории, 1983,
N12, с. 68.
6. Peters C.H.F., Knobel E.B. Ptolemy catalogue of
stars, Carnegie Inst. Publ. N 86. Washington, 1915.
7. Fricke W., Kopff A. - Verof. Astr. Inst. Heidelberg,
1963. N10.
8. Bally F.-Mem. Roy. Astl. Soc., 1843, vol. 13.
9. Auwers A. Tobias Mayer's Sternveizeichniss. Leipzig,
1894.