TopList Яндекс цитирования
Русский переплет
Портал | Содержание | О нас | Авторам | Новости | Первая десятка | Дискуссионный клуб | Чат Научный форум
Первая десятка "Русского переплета"
Темы дня:

Мир собирается объявить бесполётную зону в нашей Vselennoy! | Президенту Путину о создании Института Истории Русского Народа. |Нас посетило 40 млн. человек | Чем занимались русские 4000 лет назад? | Кому давать гранты или сколько в России молодых ученых?


Статьи Соросовского Образовательного журнала в текстовом формате


Пиролиз - ключевой процесс нефтехимии (ЛИТВИНЦЕВ И.Ю. , 1999), ХИМИЯ

Нефтехимическая промышленность включает огромное количество процессов. Основным процессом нефтехимии несомненно является пиролиз, уровень развития которого во многом определяет возможности всей отрасли. В статье дано краткое описание химизма и технологии процесса, его роли в производстве базовых продуктов нефтехимии, отражены исторические аспекты появления и возможные перспективы развития.

ПИРОЛИЗ - КЛЮЧЕВОЙ ПРОЦЕСС НЕФТЕХИМИИ

И. Ю. ЛИТВИНЦЕВ

Российский химико-технологический университет

им. Д.И. Менделеева, Москва

ВВЕДЕНИЕ

В индустриально развитых странах нефтехимическая промышленность, как правило, является ключевой отраслью, причем темпы ее развития превышают показатели роста экономики в целом. В США продукция нефтехимических и зависящих от них производств составляет четверть валового оборота страны, их экспорт превышает импорт на 12 млрд долларов, и это при общей численности работающих чуть больше миллиона человек [1].

Мировой объем выпускаемых органических продуктов в мире увеличился за последние 45 лет в 100 раз, превысив 300 млн т. Все области человеческой деятельности в той или иной степени связаны с нефтехимией, и в настоящий момент именно она оказывает наибольшее влияние на повседневную жизнь современного человека.

Промышленная органическая химии прошла длинный и сложный путь развития, в ходе которого ее сырьевая база изменилась кардинальным образом. Начав с переработки растительного и животного сырья, она затем трансформировалась в угле- или коксохимию (утилизирующую отходы коксования угля), чтобы в конечном итоге превратиться в современную нефтехимию [2], которая уже давно не довольствуется только отходами нефтепереработки. Для успешного и независимого функционирования ее основной отрасли - тяжелого, то есть крупномасштабного, органического синтеза [3] был разработан процесс пиролиза [4], вокруг которого и базируются современные олефиновые нефтехимические комплексы (рис. 1). В основном они получают, а затем и перерабатывают низшие олефины и диолефины. Сырьевая база пиролиза может меняться от попутных газов до нафты, газойля и даже сырой нефти. Предназначавшийся вначале лишь для производства этилена, этот процесс теперь является также крупнотоннажным поставщиком пропилена, бутадиена, бензола и других продуктов (рис. 1).

Кроме олефиновых выделяют еще два типа химических комплексов. Ареновые, которые в значительной степени зависят от нефтепереработки, группируясь вокруг установок риформинга прямогонного бензина. Поскольку повышение качества бензина происходит в основном за счет реакций дегидрирования циклических парафинов (нафтенов) и дегидроциклизации линейных парафинов в арены, протекающих на платиновом катализаторе, этот процесс нефтепереработки также называют платформингом. Из полученного высокооктанового бензина с повышенным содержанием аренов на комплексах этого типа выделяют индивидуальные арены, в основном бензол, толуол, ксилолы, и производят продукты их последующей переработки (рис. 2). Основными продуктами химических комплексов, получающих и перерабатывающих синтез-газ [5], являются аммиак, водород, оксид углерода, азотсодержащие соединения, а также метанол, формальдегид и термореактивные смолы (рис. 3). Они группируются вокруг установок паровой и / или окислительной переработки (конверсии) углеводородов, сырьем которых могут служить как природный газ, так и тяжелые фракции нефти (газойль, мазут). На основе синтез-газа можно производить также уксусную кислоту и другие органические продукты (рис. 3).

Из всех рассмотренных последний тип комплексов менее остальных зависит от нефти. В неотвратимо приближающийся период "очень дорогой нефти" [1] синтез-газ может стать реальной альтернативой нефтяному сырью [5], а химические комплексы по его переработке - занять ключевую позицию поставщиков сырья для промышленной органической химии.

Однако в настоящее время и по объему и по ассортименту выпускаемой продукции вне конкуренции находятся олефиновые нефтехимические комплексы, основой которых является процесс пиролиза - деструктивного превращения исходных углеводородов при температуре выше 650-700?С, как правило, в присутствии водяного пара. Если из попутных газов получают в основном этилен, то пиролиз нефтяных фракций (см. рис. 1) позволяет дополнительно к С2Н4 получать ценнейший набор углеводородов (пропилен, бензол, бутадиен, изопрен, изобутилен, бутены, изоамилены, ацетилен). Наличие в их составе трех базовых и самых крупнотоннажных соединений - этилена, пропилена и бензола - еще раз подчеркивает уникальность пиролиза. Уже 40 лет именно эти продукты являются основой сырьевой базы нефтехимической промышленности, и в настоящее время их годовой выпуск - один из основных показателей потенциала промышленного развития.

Среднегодовой мировой прирост спроса на этилен составлял 4,9% в 1992-1997 годах и ожидается не ниже 3,6% в 1997-2005 годах. В результате к 2000 году его выпуск возрастет до 90 млн т в год, а к 2005 году - до 103 млн т в год, что позволит поддерживать коэффициент загрузки установок на уровне 90-95%. Для пропилена (на пиролиз приходится больше 60% его мирового выпуска, остальное количество С3Н6 извлекают из газов каталитического крекинга) показатель прироста несколько выше (5,9% в 1992-1997 годах и 4,1% в 1997-2005 годах), а рубеж в 50 млн т/год, по-видимому, будет достигнут к 2000 году. Рост спроса на бензол (выделяют примерно в одинаковом количестве из бензинов пиролиза и риформинга) в аналогичные указанные выше периоды соответственно 4,0 и 3,1%. Его мировое потребление с 23 млн т в 1983 году возрастет до ~ 31 млн т в 2000 году и 35 млн т в 2005 году.

ИСТОРИЧЕСКИЕ АСПЕКТЫ

РАЗВИТИЯ ПИРОЛИЗА

Основу сырьевой базы современной нефтехимии - этилен получали сначала из коксового газа, дегидратацией этанола и даже гидрированием ацетилена. Такая ситуация сохранялась во многих странах до конца второй мировой войны. Однако, по мере того как потребность в этилене росла, его производство стало все больше определяться пиролизом нефтяных фракций (легкого бензина, нафты, газойля) и попутного газа. Первые промышленные установки появились сначала в США. В 1920 году "Union Carbide" и "Carbon Co" построили пилотную установку пиролиза этана и пропана, они же впоследствии разработали и пиролиз газойля.

В Западной Европе и Японии пиролиз получил заметное развитие лишь после окончания второй мировой войны, хотя еще в 1942 году "British Celanese" соорудила первую западноевропейскую установку пиролиза газойля мощностью 6000 т этилена в год. В 1946 году "Shell Chemical" закончила строительство первого нефтехимического комбината в Станлоу, где в качестве сырья пиролиза использовали газы стабилизации нефти. К 1950 году средняя мощность строящихся установок пиролиза возросла от 10 до 50 тыс. т этилена в год, к 1982 году - до 450 тыс. т.

В СССР многотоннажное производство этилена начали осваивать в конце 40-х годов, но резкий рост мощностей произошел в период 1965-1976 годов. Его логическим завершением явился пуск комбинированной установки "Этилен-450" в Нижнекамске (выпускающей также 200 тыс. т пропилена, 180 тыс. т бензола и 54 тыс. т бутадиена в год).

Достижения химического машиностроения, металлургии, прогресс инженерной и химической мысли позволяют достигать мощности 750 тыс. т этилена в год и выше с одной установки. Но, как правило, при выборе этого показателя большое влияние оказывают такие конъюнктурные соображения, как размеры потенциального рынка сбыта, природа сырья и стоимость его транспортировки, колебания спроса и т.д. Так, среди установок, введенных в строй за последнее время, кроме гигантов по 680 тыс. т в год (обе в Техасе) или 600 тыс. т в год (Антверпен и Ишихара), почти у половины мощность не превышает 350 тыс. т.

ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ПИРОЛИЗА

Ненасыщенные углеводороды - целевые продукты пиролиза - только при достижении достаточно высокой температуры становятся термодинамически более стабильными, чем соответствующие им парафины. Для этилена, например, эта величина составляет 750?С. Сравним термодинамику возможных маршрутов образования олефинов. В первом случае при расщеплении (крекинге) молекулы исходного парафина:

C(m + n)H2(m + n) + 2 CmH2m + CnH2n + 2 ,

= 75 200 - 142T (кДж/моль)

и во втором при дегидрировании:

CpH2p + 2 CpH2p + H2 ,

= 125 400 - 142T (кДж/моль)

Обе реакции эндотермичны и протекают с увеличением объема. Чтобы сместить равновесие в сторону расщепления сырья и образования олефинов, необходимо увеличить температуру и снизить давление. Но если крекинг углеводородов происходит с заметной скоростью уже при температуре 700?С, то вклад реакции дегидрирования в образование продуктов пиролиза становится ощутимым лишь начиная с 800-850?С. По экономическим соображениям для снижения давления углеводородов применяют не вакуум, а разбавление исходной смеси водяным паром. Последнее приводит к некоторым последствиям. Положительные связаны:

1) со снижением удельного количества тепла, необходимого для нагрева труб в реакторе за счет введения части калорий с водяным паром непосредственно в сырье;

2) с некоторым снижением коксообразования в ходе реакции

С + Н2О = СО + Н2 ,

не играющим, однако, определяющей роли при температурах порядка 1000?С.

К отрицательным последствиям относятся затраты энергии на нагрев до температуры реакции, рост инвестиций, связанных с необходимостью увеличения размеров печи и усложнения системы разделения продуктов пиролиза. Необходимое количество вводимого пара зависит в основном от молекулярной массы исходных углеводородов и лежит в интервале 0,25-1 т на тонну сырья соответственно для этана и тяжелых нефтяных фракций.

Итак, основная реакция пиролиза (особенно в случае использования в качестве сырья нефтяных фракций) - крекинг углеводородной цепи с образованием олефина и парафина (рис. 4, маршрут I). Ее первичные продукты могут претерпевать дальнейшее расщепление (вторичный крекинг - маршруты II и III). В конечном итоге получается смесь легких углеводородов, богатая олефинами. Дегидрирование соответствующих олефинов приводит к образованию ацетилена и его производных, а также бутадиена и других диеновых углеводородов, обладающих высокой реакционной способностью (IV). Последние в условиях пиролиза вступают в реакции циклизации или Дильса-Альдера (V). При дегидрировании из циклоолефинов получаются арены, в частности бензол (VI), являющиеся, в свою очередь, предшественниками полициклических углеводородов и кокса (VII). Протеканию последних реакций (значит, и увеличению отложения кокса) благоприятствует повышение температуры до 900-1000?С.

Другой нежелательный процесс - полимеризация ненасыщенных углеводородов в условиях пиролиза практически не протекает. Это реакция экзотермична и начинается лишь при понижении температуры. Быстрое преодоление температурной области, где она уже возможна, и скорость ее еще высока - основная задача стадии охлаждения газов пиролиза.

С увеличением времени пребывания сырья в зоне высоких температур увеличивается вклад нежелательных последовательных превращений целевых продуктов. Поэтому для повышения избирательности (селективности) пиролиза надо уменьшать время контакта. При этом, однако, снижается степень переработки сырья за проход, а значит, и выход продуктов, увеличиваются расходы на рецикл. Оптимизация условий процесса с учетом экономических факторов оставила последнее слово за избирательностью. В печах USC фирмы "Stone and Webster", последних вариантов GK фирмы KTI время пребывания не превышает 0,2-0,3 с, в печах "Millisecond" фирмы "Kellog" - 0,1 с. Не только выход продуктов пиролиза, но и их состав являются функцией многих параметров, в первую очередь природы сырья и условий осуществления процесса. Создание модели, позволяющей рассчитать изменение и качественных и количественных показателей пиролиза нафты во времени, остается актуальной задачей.

Радикально-цепной характер основных реакций пиролиза был доказан достаточно давно. Начальное зарождение цепи происходит под влиянием температуры при гомолитическом разрыве наиболее слабой связи С-С с образованием свободных радикалов. Последние способны оторвать атом водорода от молекулы исходного углеводорода, образуя новый свободный радикал:

JCH3 + R-CH2-CH2-CH2-CH2-CH2-CH2-CH3

CH4 + R-CH2-CH2-CH2-CH2-JCH-CH3

или

JC2H5 CH2=CH2 + HJ,

JН + парафин Н2 + свободный радикал.

В общем случае образующиеся первичные радикалы с длинной цепью неустойчивы. Их стабилизация происходит в основном за счет расщепления связи С-С, находящейся в b-положении к радикальному центру, что отвечает общему принципу наименьшего изменения структуры:

R-CH2-CH2-CH2b-CH2a-JCH-CH2CH3

R-CH2-CH2-JCH2 + CH2=CH-CH2-CH3

Эта реакция b-распада повторяется до тех пор, пока не образуется сравнительно устойчивый радикал - метильный или этильный, который, в свою очередь, становится источником зарождения новой цепи. Вероятность образования тех или иных радикалов на стадии продолжения цепи зависит от строения атакуемой молекулы углеводорода. Отрыв атома водорода от третичного атома углерода происходит легче, чем от вторичного и тем более первичного атома. В общем случае выход увеличивается с ростом содержания парафинов в сырье, то есть зависит и от химического состава нафты. Термическая стабильность углеводородов возрастает в ряду парафины < нафтены < арены и уменьшается с ростом длины цепи.

Многообразие протекающих вторичных реакций затрудняет моделирование процесса, особенно при усложнении природы сырья и увеличении степени конверсии. До сих пор при проектировании печей опыт, эмпирические зависимости и экспериментальная проверка играют очень важную роль.

ТЕХНОЛОГИЧЕСКИЕ ПАРАМЕТРЫ ПРОЦЕССА

Термодинамика и кинетика диктуют следующие условия проведения пиролиза:

J быстрый подвод значительного количества тепла,

J снижение парциального давления углеводородов,

J минимальное время контакта,

J минимальное время охлаждения газов пиролиза, выходящих из реактора, для предотвращения нежелательной полимеризации олефинов.

На практике для их осуществления применяют трубчатые печи, на выходе из которых продукты подвергают закалке. В трубки подают исходное сырье и пар, а в межтрубное пространство - теплоноситель. Кокс, откладывающийся на внутренних стенках трубок, периодически выжигают. Конструкция установки пиролиза во многом определяется природой используемого сырья. В общем случае она обязательно включает две основные секции: так называемую горячую, где осуществляется пиролиз исходного сырья и рецикла, и холодную, отвечающую за разделение и очистку получаемых продуктов.

На рис. 5 приведен один из вариантов сильно упрощенной схемы пиролиза нафты. Исходное сырье подают в конвективную зону (секцию) печи, где оно смешивается с водяным паром и подогревается до необходимой температуры за счет тепла уходящих топочных газов. Затем полученная смесь углеводородов и пара поступает в радиантную зону печи (рис. 5, 2 ), где теплопередача осуществляется за счет излучения раскаленных панелей, обеспечивая протекание процесса пиролиза. На выходе из печи продукты нагреваются до 800-850?С. Во избежание нежелательного процесса полимеризации олефинов осуществляют так называемую закалку или их быстрое охлаждение, как правило, в два этапа. На первом (непрямая закалка) - водным конденсатом и на втором (прямая закалка) - пиролизным маслом (рис. 5, 3-5 ), образовавшимся в процессе конденсации. С температурой 350-400?С охлажденный поток продуктов поступает в колонну первичного фракционирования, где из куба отбирают тяжелую фракцию, а с одной из средних тарелок - бензин пиролиза и воду. Несконденсировавшиеся газы пиролиза выходят с верха колонны. После компримирования, промывки раствором щелочи и осушки их направляют в холодную секцию установки. Существуют несколько вариантов ее технологического оформления, решающих сходные задачи: получение более или менее концентрированного водорода, этилена с чистотой 99,9 мас. %, пропилена с чистотой 95-99,5 мас. %, фракции С4 , содержащей от 25 до 50% бутадиена, фракции С5 и бензина пиролиза, богатого ароматическими углеводородами.

Для достижения максимальных выходов по этилену (выше 30% в случае нафты) обычно применяют температуру ~ 850?C, время контакта 0,2-0,3 с и массовое соотношение Н2О / сырье = 0,5-0,6. Развитие процесса в последние десятилетия направлено в сторону увеличения его жесткости, то есть поиска возможных путей роста температурной нагрузки и сокращения времени пребывания.

НОВЫЕ ВАРИАНТЫ

ОСУЩЕСТВЛЕНИЯ ПИРОЛИЗА

К настоящему времени единственным освоенным и широко распространенным промышленным методом является пиролиз в трубчатых печах. Его качественное развитие направлено пока в основном по пути совершенствования существующей технологии. Однако, несмотря на достигнутый прогресс, связанный с изменением конструкции змеевика и конвекционной зоны печи, использованием современных закалочно-испарительных аппаратов (ЗИА), возможности этого процесса ограничены, особенно при использовании сырья, склонного к повышенному коксообразованию. Необходимость расширения сырьевой базы, сокращения удельного расхода сырья, а также энергетических и материальных затрат заставляет вести поиск новых модификаций процесса, в основном рассчитанных на пиролиз тяжелых видов углеводородного сырья (мазут, вакуумный газойль, нефть). При этом предлагаются и принципиально новые методы осуществления пиролиза. К их числу относятся каталитический, инициированный, окислительный и гидропиролиз, а также термоконтактные варианты этого процесса.

В ходе разработки каталитического пиролиза исследовано влияние большого числа гетерогенных и гомогенных катализаторов. В условиях гетерогенно-каталитического пиролиза, как было показано советскими исследователями [4], происходит увеличение селективности процесса и степени превращения сырья (выхода этилена). Результаты многочисленных работ, выполненных ими, позволили выявить каталитическую активность ряда соединений: оксидов металлов переменной валентности, оксидов и алюминатов щелочных, щелочноземельных и редкоземельных металлов, а также некоторых алюмосиликатов. Обычно их наносят на носители, в качестве которых применяют пемзу, модификации оксидов алюминия и циркония, корунд, аморфные и кристаллические цеолиты. Из множества проверенных катализаторов пиролиза лучшие результаты получены при использовании метаванадата калия, оксидов индия, кальция и магния, некоторых цеолитов. Так, например, применение ванадата калия на синтетическом корунде, оксидов индия и калия на пемзе позволяет почти на 10% увеличить выход этилена по сравнению с результатами термического пиролиза высокой жесткости при сохранении выхода пропилена на прежнем уровне. Варьируя состав катализатора, возможно значительно изменять выход бутадиена. На отдельных катализаторах было исследовано влияние природы сырья, а при пиролизе индивидуальных олефинов высказаны предположения о возможных вариантах механизма каталитического пиролиза. Установлена специфическая роль водяного пара, взаимодействующего с поверхностью катализаторов. На опытных установках проведено исследование влияния коксообразования на каталитическую активность и отработаны условия регенерации катализатора, способного работать до 200 ч (количество водяного пара около 75% по массе). Расчеты показали высокую эффективность каталитического пиролиза, приводящего к снижению на 10-12% себестоимости низших олефинов.

В настоящее время центр исследований этого направления из России перемешается в Японию. В 1995 году там начата разработка нового проекта энергосберегающего способа получения этилена из нефти низкотемпературным каталитическим пиролизом с целью замены традиционного энергоемкого процесса. Полагая, что на его создание потребуется 10 лет, стоимость предстоящих работ оценили в 192 млн долларов. Основой разработки остается выбор катализатора, отвечающего совокупности всех требований процесса. Переход от существующей технологии к каталитическому пиролизу позволит сэкономить 200 тыс. м3 топлива (30% энергозатрат) на 1 млн т этилена.

В качестве гомогенных инициаторов первичных реакций пиролиза был исследован широкий круг соединений. Целью их применения являлось снижение жесткости процесса при сохранении (увеличении) селективности и выхода по этилену. По различным причинам одни из самых активных инициаторов - пероксид водорода (высокая стоимость добавки) и хлороводородная кислота (проблемы коррозии) не получили практического применения. Отмечено положительное влияние некоторых кислородсодержащих органических соединений (кислоты, спирты, отходы различных производств, содержащие смеси этих и других окисленных углеводородов) на выход этилена, возрастающее с "утяжелением" исходного сырья.

Для уменьшения скоростей вторичных реакций и увеличения скорости газификации откладывающегося кокса в качестве добавок предложено применять органические и неорганические соединения S и P, соли и гидроксиды некоторых металлов. К синергетическому эффекту (увеличение скорости и снижение коксообразования) приводит использование в качестве активирующей добавки продуктов озонолиза определенных нефтепродуктов, включающих одновременно и серо- и кислородсодержащие фрагменты (раб. автора).

Эффективной добавкой к исходной нефтяной фракции пиролиза могут служить водород или вещества, образующие его в условиях процесса. Кроме положительного влияния на скорость первичных реакций присутствие Н2 снижает степень коксообразования. Недостатки варианта гидропиролиза связаны с дополнительным расходом водорода и увеличением объема газообразных продуктов пиролиза, что приводит к ухудшению показателей стадии разделения пирогаза. С целью их устранения был предложен вариант поведения пиролиза в условиях повышенного давления водорода - 2,0-2,5 МПа. В жестких условиях при пиролизе бензинов выход этилена составляет около 40%, метана - 34%. Аналогичные результаты получены при подаче в зону пиролиза нафты или газойля водородсодержащих продуктов предварительно проведенного пиролиза этана.

Термоконтактный пиролиз возможен с использованием жидких, газообразных и твердых теплоносителей. Применение для этой цели расплавов (металлов, их солей и шлаков) имеет достоинства: высокоэффективная теплопередача, возможность переработки практически любых видов сырья, простота непрерывной эвакуации сажи и кокса из зоны реакции. Пиролиз в расплавах позволяет получать из широких нефтяных фракций этилен с высоким выходом (до 25% при пиролизе нефти). Значительный комплекс работ в этом направлении с изучением различных способов технологического оформления процесса выполнен советскими учеными. Исследованы различные способы контактирования углеводородов с теплоносителем: барботаж через слой расплава, переработка в дисперсии или пленке расплава. По способу подвода тепла возможен прямой контакт расплава со средой либо через стенку аналогично процессу пиролиза в трубчатых печах.

Основные проблемы пиролиза в расплавах связаны с необходимостью нагрева и циркуляции теплоносителя. С целью их решения проверен вариант пиролиза в трубчатых печах с дисперсионно-кольцевым течением расплава. За счет повышения теплонапряженности поверхности змеевика удалось значительно сократить его длину, а значит, и время пребывания в нем сырья до 0,05 с. Соответственно наблюдали и увеличение выхода этилена при пиролизе бензина с 28 до 41%. Применение расплавов металлов с температурой плавления < 300?С в некоторой степени упрощает технологию подвода тепла и разделения продуктов, однако не решает эту проблему в полной мере.

Вариант пиролиза с использованием высоконагретых газообразных теплоносителей начали активно изучать еще в 60-х годах. Первоначально использовали дымовые газы или их смесь с перегретым водяным паром преимущественно для получения ацетилена. Однако невысокие технико-экономические показатели этого направления заставили отказаться от него, ориентируясь на перегретый до 1600-2000?С водяной пар. При температуре 900-1200?С (на выходе из адиабатического реактора) и времени пребывания 0,005 с из нефти получают пирогаз с высоким содержанием этилена (до 21%) и ацетилена (до 13%), а также жидкое сырье для производства графитовых материалов. Японская фирма "Kurecha Chemical Industry" в 1970 году начала эксплуатацию промышленной установки такого типа мощностью 100 тыс. т по перерабатываемой нефти. Дальнейшим развитием технологии этого процесса занимался консорциум японских фирм и "Union Carbide". Мощность опытных установок была доведена до 2000 т этилена в год, но запланированные сроки промышленной реализации проекта все время отодвигаются. Аналогична судьба и русского аналога, применявшего в качестве теплоносителя смесь водяного пара и водорода и предназначенного для пиролиза вакуумного газойля и мазута.

Появление перспективных вариантов каталитического, инициированного, водородного пиролиза пока не привело к кардинальному пересмотру сложившихся представлений. Зато достигнут значительный прогресс на стадии разделения, в результате которого стали доступными индивидуальные бутены, изо- и н-амилены, изопентан, изопрен, дициклопентадиен, что может дать резкий толчок развитию новых промышленных синтезов на их основе. Расширение сырьевой базы и спектра продуктов пиролиза, согласно большинству прогнозов, сохранит за ним ключевые позиции в нефтехимии и в реально обозримом будущем.

ЛИТЕРАТУРА

1. Химия и общество. Американское химическое общество: Пер. с англ. М.: Мир, 1995. 560 с.

2. Караханов Э.А. Что такое нефтехимия // Соросовский Образовательный Журнал. 1996. ╧ 2. С. 65-73.

3. Лебедев Н.Н. Технология основного органического и нефтехимического синтеза. М.: Химия, 1988.

4. Мухина Т.Н. и др. Пиролиз углеводородного сырья. М.: Химия, 1987.

5. Караханов Э.А. Синтез-газ как альтернатива нефти. I. Процесс Фишера-Тропша и оксо-синтез // Соросовский Образовательный Журнал. 1997. ╧ 3. С. 69-74.

* * *

Игорь Юрьевич Литвинцев, кандидат химических наук, доцент кафедры технологии основного органического и нефтехимического синтеза факультета технологии органических веществ Российского химико-технологического университета им. Д.И. Менделеева. Область научных интересов - нефтехимия, гомогенное окисление, кинетика органических реакций. Автор более чем 150 научных публикаций.


Rambler's Top100