Статьи Соросовского Образовательного журнала в текстовом формате
Рассматриваются сегнетоэластические кристаллы, в которых в результате структурного фазового перехода возникает спонтанная деформация. Особое внимание уделено свойствам сегнетоэластиков, которые являются специфическими для этого класса кристаллов: гистерезисной зависимости деформации от внешнего механического напряжения, наличию подвижной доменной структуры, а также акустоэлектронным, оптическим, электромеханическим и другим свойствам.
СЕГНЕТОЭЛАСТИКИ -НОВЫЙ КЛАСС КРИСТАЛЛИЧЕСКИХ ТВЕРДЫХ ТЕЛ
С. А. ГРИДНЕВ
Воронежский государственный технический университет
ВВЕДЕНИЕ
Не совсем обычное сочетание слов "сегнетоэластический кристалл" или "эластический кристалл", вероятно, малознакомо читателям нашего журнала и вызывает некоторое недоумение из-за противоречивости бытовых представлений о кристалле и эластичном материале. Тем не менее оказывается все же, что такие кристаллы на самом деле существуют и активно изучаются, но в научно-популярной литературе какая-либо информация о них отсутствует. Поэтому далеко не все читатели (преподаватели и школьники) представляют себе, что же стоит за этим понятием, и вполне естественно возникает вопрос: чем примечательны кристаллы, которые называются сегнетоэластиками? Почему к их исследованию проявляется большой интерес? Попробуем разобраться в этом.
Можно дать следующее определение сегнетоэластическим кристаллам или сегнетоэластикам, как часто их называют. Сегнетоэластики - это особый класс кристаллических твердых тел, в которых в результате структурного фазового перехода из более симметричной (параэластической) в менее симметричную (сегнетоэластическую) фазу в определенном температурном интервале спонтанно (самопроизвольно) возникает деформация кристаллической решетки относительно исходной, которая может быть реориентирована приложенными к кристаллу внешними механическими напряжениями.
Известно, что все кристаллы анизотропны в отношении каких-либо свойств (механических, электрических, магнитных, оптических и т.д.), то есть их физические свойства зависят от направления в кристалле. Анизотропия свойств кристаллов тесно связана с их симметрией и проявляется тем сильнее, чем ниже симметрия. Математически анизотропные свойства характеризуются векторами и тензорами, а графически анизотропию изображают с помощью указательных поверхностей, или индикатрис. Для получения индикатрисы из центра полярной диаграммы откладывают отрезки, изображающие в условном масштабе величины соответствующих векторов для выбранных направлений. Поверхность, на которой лежат концы этих векторов, и будет индикатрисой. Для изотропных сред индикатриса - сфера, а для анизотропных сред - более сложные поверхности.
Упругие свойства большинства твердых тел при достаточно малых механических напряжениях определяются законом Гука, который выражает линейную зависимость между напряжением s и деформацией x:
s = C x,
где С - упругая жесткость или просто жесткость.
Вместе с тем закон Гука можно записать в виде
x = ss,
где s = 1/C - упругая податливость или просто податливость.
Для кристаллов с низкой симметрией полное описание упругих свойств требует знания большого числа компонент упругой податливости или жесткости по разным направлениям. Например, для цинка их пять, а для кристалла триглицинсульфата 13. Очевидно, что деформация, возникающая как реакция кристалла на воздействие внешнего напряжения, также должна содержать большое число компонент x, определяемых как симметрией кристалла, так и направлением воздействия.
Если изменяется лишь температура кристалла, то воздействие является ненаправленным, вследствие чего результирующая деформация, возникающая при этом (тепловое расширение), является однородной и не изменяет симметрии кристалла. Спонтанная деформация в сегнетоэластическом кристалле также появляется при изменении температуры через точку фазового перехода, но здесь ситуация иная, отличная от теплового расширения. Как отличить спонтанную деформацию от теплового расширения? Дело в том, что в сегнетоэластике в результате фазового перехода обязательно возникает новая компонента деформации. Только новая компонента деформации, запрещенная в высокосимметричной фазе и спонтанно возникающая при структурном фазовом переходе, дает новый вид перехода - сегнетоэластический фазовый переход [1].
Различают чистые сегнетоэластики - кристаллы, обладающие только сегнетоэластическими свойствами, но не являющиеся сегнетоэлектриками [2] или ферромагнетиками [3], и смешанные (комбинированные) сегнетоэластики - кристаллы, являющиеся одновременно сегнетоэластиками и сегнетоэлектриками или сегнетоэластиками и ферромагнетиками. К числу чистых сегнетоэластиков относятся кристаллы ортофосфата свинца Pb3(PO4)2 , тригидроселенита калия KH3(SeO3)2 и др. К числу смешанных сегнетоэластиков относятся кристаллы титаната бария BaTiO3 , молибдата гадолиния Gd2(MoO4)3 , дигидрофосфата калия КН2РО4 и др. Как и сегнетоэлектрики, сегнетоэластические кристаллы могут быть одноосными, в которых спонтанная деформация возникает только вдоль одной из осей кристалла, если это продольная компонента x, или вокруг одной из осей кристалла при сдвиговой компоненте деформации (тригидроселенит калия, молибдат гадолиния), а также многоосными (например, ортофосфат свинца, титанат бария).
На возможность существования фазовых переходов с возникновением только спонтанной деформации впервые указал отечественный физик В.Л. Инденбом еще в 1960 году, однако только в 1969 году японский ученый К. Аизу в физику твердого тела ввел специальный термин "сегнетоэластик" (или "ferroelastic" в иностранной научной литературе) и показал необходимость отдельного рассмотрения сегнетоэластических фазовых переходов. Выделение сегнетоэластиков в самостоятельный класс подчеркнуло общность различных типов структурных фазовых переходов: ферромагнитных [3], сегнетоэлектрических [2], мартенситных [4], сегнетоэластических и др. Кроме того, вскоре стало ясно, что и на макроскопическом и на микроскопическом уровне сегнетоэластики обнаруживают существенные особенности в поведении. Таким образом, теперь не вызывает сомнения тот факт, что самый многочисленный класс кристаллов, испытывающих структурные фазовые переходы, - сегнетоэластики - заслуживает самостоятельного изучения. В настоящее время физика сегнетоэластиков - один из быстро развивающихся разделов физики твердого тела.
ОБЩИЕ ЧЕРТЫ
СЕГНЕТОЭЛАСТИЧЕСКИХ И ДРУГИХ СТРУКТУРНЫХ ФАЗОВЫХ ПЕРЕХОДОВ
Среди различных типов фазовых переходов, которые могут происходить в твердых телах (электронные, магнитные, изоморфные и др.), наиболее часто встречаются структурные фазовые переходы, то есть такие переходы, при которых изменяются структура и симметрия кристалла. В свою очередь, структурные фазовые переходы в кристаллах принято делить на две большие группы. Первую группу составляют реконструктивные фазовые переходы, сопровождаемые перемещением атомов на большие расстояния и радикальной перестройкой структуры. Во вторую группу входят дисторсионные фазовые переходы, при которых происходит небольшое смещение атомов на доли элементарной ячейки. Эти фазовые переходы сопровождаются малыми искажениями исходной структуры, и для их описания вводят так называемый параметр перехода.
Параметр перехода - это некоторая физическая величина, отсутствующая в высокосимметричной фазе и появляющаяся в результате фазового перехода в низкосимметричной фазе. Ее возникновение обусловливает многие физические свойства кристаллов и поведение кристалла при фазовом переходе, а также полностью описывает изменение симметрии при фазовом переходе. В качестве параметра фазового перехода чаще всего выступает макроскопическая физическая величина, легко измеряемая в физическом эксперименте: электрическая поляризация Р, намагниченность М, деформация x и др.
В окрестности структурного фазового перехода практически все физические свойства (диэлектрические, упругие, электрооптические, пьезоэлектрические и др.) ведут себя необычно, аномально (изменяются скачком, проходят через максимум и т.д.). Если, например, параметром перехода является компонента вектора поляризации (сегнетоэлектрический фазовый переход), то аномально при температуре фазового перехода (в точке Кюри ТК) изменяется диэлектрическая проницаемость e, если же параметр перехода - вектор намагниченности (ферромагнитный фазовый переход), то магнитная проницаемость m, а если параметр перехода - деформация x (сегнетоэластический фазовый переход), то упругая податливость s.
Как правило, спонтанно возникающие при структурном фазовом переходе величины или x изменяются гистерезисно при циклическом изменении соответственно внешнего электрического поля Е, магнитного поля Н или механического напряжения s. Гистерезисные кривые Р(Е ), М(Н ) и x(s) отражают тот факт, что направление векторов спонтанной поляризации и намагниченности или знак продольной или сдвиговой деформации могут быть изменены на обратные или реориентированы на определенный угол под действием внешних Е, Н или s. Как читателю уже известно, такие кристаллы называются соответственно сегнетоэлектриками, ферромагнетиками и сегнетоэластиками в отечественной литературе и ферроэлектриками, ферромагнетиками и ферроэластиками в зарубежной.
Из рис. 1 нетрудно убедиться в том, что, несмотря на разную природу явлений в этих кристаллах, их объединяет одинаковое поведение основных характерных свойств: магнитных (а), электрических (б ) и механических (в). Наличие в названиях этих кристаллов общей приставки "ферро" дало основание ввести для всех таких кристаллов общее название - ферроики. Таким образом, сегнетоэластики, так же как сегнетоэлектрики и ферромагнетики, относятся к ферроичным кристаллам или ферроикам. Можно сказать, что сегнетоэластики - это механические аналоги сегнетоэлектриков и ферромагнетиков, то есть кристаллы с нелинейными механическими свойствами.
Сегнетоэластические фазовые переходы характеризуются следующими общими чертами, установленными первоначально для ферромагнитных и сегнетоэлектрических фазовых переходов:
1) имеется параметр перехода;
2) искажение кристаллической решетки и смещения атомов при переходе малы по сравнению с параметрами элементарной ячейки, причем низкосимметричную структуру можно в принципе получить малым искажением структуры исходной высокосимметричной фазы;
3) в сегнетоэластической фазе ниже точки перехода возникают сегнетоэластические домены (упругие двойники), решетки которых находятся в определенном ориентационном соответствии друг к другу и с решеткой параэластической фазы;
4) ниже точки Кюри под действием соответствующего внешнего механического напряжения сегнетоэластические домены могут переключаться из одного ориентационного состояния в другое, что приводит к нелинейной зависимости x от s. При циклическом изменении s зависимость x(s) имеет вид насыщенной петли механического гистерезиса;
5) в окрестности сегнетоэластического фазового перехода наблюдаются аномалии различных физических свойств кристалла.
Экспериментальные исследования свидетельствуют, что перечисленные общие черты фазовых переходов присущи как сегнетоэластическим, так и сегнетоэлектрическим и ферромагнитным фазовым переходам, то есть всем ферроическим фазовым переходам.
СТРУКТУРНЫЕ ТИПЫ
И СЕМЕЙСТВА СЕГНЕТОЭЛАСТИКОВ
От года к году число сообщений о новых сегнетоэластиках непрерывно растет. Сейчас известно более 150 соединений, относящихся к чистым сегнетоэластикам. Все они составляют более 20 семейств с определенным типом кристаллической структуры. Название структурного типа в основном соответствует названию родоначальника семейства - известного минерала согласно его интернациональным обозначениям: перовскиты, фресноиты, эльпасолиты, цианиды и др. Здесь перечислены далеко не все семейства сегнетоэластиков, известных к настоящему времени. Можно не сомневаться, что количество новых сегнетоэластиков и число реализующихся видов сегнетоэластических фазовых переходов будут продолжать быстро увеличиваться.
ОСНОВНЫЕ СВОЙСТВА СЕГНЕТОЭЛАСТИКОВ
Доменная структура
При охлаждении через точку Кюри ТК из параэластической фазы в сегнетоэластическую в механически свободном состоянии, то есть при отсутствии внешних механических напряжений, сегнетоэластик разбивается на сегнетоэластические домены таким образом, чтобы суммарная деформация образца с учетом ее знаков в каждом домене равнялась нулю. Домены - это области сегнетоэластика с постоянным значением спонтанной деформации, различающиеся направлением спонтанной деформации. Разбиение кристалла на домены при этом соответствует минимуму упругой энергии кристалла. Схематически это изображено на рис. 2.
Под действием приложенного к кристаллу определенным образом ориентированного внешнего механического напряжения спонтанные деформации, существующие в отдельных доменах и соответствующие определенному ориентационному состоянию, могут быть реориентированы, и при достаточно больших значениях напряжения кристалл становится монодоменным, а его суммарная деформация достигает насыщения.
Причины образования доменной структуры сегнетоэластиков на сегодняшний день не совсем ясны. Аналогия с сегнетоэлектриками и ферромагнетиками оказывается здесь бессильной. Дело в том, что в сегнетоэластиках нет аналога деполяризующего или размагничивающего поля, поэтому нет энергетического стимула разбиения на домены. В однородном поле механических напряжений для незажатого (свободного) кристалла равновесным является монодоменное состояние. Согласно гипотезе, высказанной А.Л. Ройтбурдом, роль деполяризующего поля в сегнетоэластиках играют неоднородные внутренние напряжения, возникающие в кристалле при переходе через точку Кюри и распространяющиеся на большие расстояния. Эти напряжения становятся существенно меньше, когда кристалл ниже ТК разбивается на домены с различной собственной деформацией. При определенной толщине доменов происходит исчезновение дальнодействующих упругих напряжений, то есть процесс разбиения на домены является энергетически выгодным.
В прозрачных сегнетоэластических кристаллах доменную структуру можно наблюдать с помощью оптического поляризационного микроскопа вследствие разориентации оптических индикатрис или различного двойного лучепреломления соседних доменов. Дело в том, что деформационные разориентации сегнетоэластических доменов всегда сопровождаются соответствующей разориентацией их оптических индикатрис, поэтому соседние сегнетоэластические домены всегда визуально различимы поляризационно-оптическим методом по различным положениям погасания (рис. 3). Таким образом, оптическая различимость доменов и наблюдаемость доменной структуры в поляризованном свете являются надежным экспериментальным критерием сегнетоэластических кристаллов. Действительно, все известные кристаллы, в которых доменная структура наблюдается в поляризационном микроскопе (BaTiO3 , KH2PO4 , Gd2(MoO4)3 , KH3(SeO3)2 и др.), являются сегнетоэластиками. В то же время сегнетоэлектрики, доменную структуру которых нельзя различить этим методом (SbSJ, триглицинсульфат), не обладают сегнетоэластическими свойствами.
Геометрия доменов в кристаллах сегнетоэластиков весьма разнообразна. Доменная структура реального сегнетоэластического кристалла определяется природой и характером распределения его дефектов, а также геометрией и предысторией образца. Число различных типов доменов, взаимная ориентация их спонтанной деформации зависят от симметрии кристалла. Так, например, в кристалле чистого сегнетоэластика Pb3(PO4)2 наблюдаются три типа доменов, которые могут быть разделены двумя видами доменных границ.
Если сегнетоэластик смешанный, то есть является одновременно и сегнетоэлектриком, то границы между сегнетоэластическими доменами являются одновременно и границами, разделяющими сегнетоэлектрические домены. При этом если кристалл - одноосный сегнетоэлектрик, то есть такой сегнетоэлектрик, в котором спонтанная поляризация Pсп возникает только вдоль одной из осей кристалла (например, молибдат гадолиния, сегнетова соль и др.), то сегнетоэластические домены совпадают с сегнетоэлектрическими. Такие смешанные сегнетоэластики называют полными сегнетоэластиками-сегнетоэлектриками. В случае многоосных сегнетоэлектриков, в которых Pсп может равновероятно возникнуть вдоль одной из нескольких осей кристалла (титанат бария, тригидроселенит натрия и пр.), внутри каждого сегнетоэластического домена может существовать чисто сегнетоэлектрическая доменная субструктура. Такие смешанные сегнетоэластики называют неполными сегнетоэластиками-сегнетоэлектриками. Соседние сегнетоэластические домены оптически различимы в поляризованном свете, а сегнетоэлектрическая субструктура неразличима. Подчеркнем, что все многоосные сегнетоэлектрики непременно являются сегнетоэластиками. При этом все сегнетоэластические доменные границы таких смешанных сегнетоэластиков являются также и сегнетоэлектрическими границами.
Переключение доменов
Домены могут переключаться из одного ориентационного состояния в другое под действием механических напряжений определенной величины и направления. В поле внешних механических напряжений домены становятся энергетически неэквивалентными: более благоприятно ориентированные относительно внешнего напряжения домены растут за счет менее энергетически выгодных. Устанавливается новая доменная структура, соответствующая данному значению внешнего напряжения. При некотором значении внешнего напряжения кристалл переходит в монодоменное состояние, теперь весь кристалл представляет собой один домен, а доменные границы в нем отсутствуют. Эволюция доменной структуры в поле внешних напряжений лежит в основе изменения деформации сегнетоэластиков под действием механических напряжений. Кинетика образования доменной структуры и ее изменения во внешних полях напряжений определяется подвижностью доменных границ, а также процессами зарождения новых доменов. Таким образом, процесс переключения может происходить, например, путем зарождения тонких клиновидных или линзообразных доменов с последующим их ростом и движением регулярных плоских или зигзагообразных доменных границ.
Взаимодействие доменных границ с периодическим полем кристаллической решетки, дефектами и неоднородностями кристалла, а также с другими доменными границами приводит к трению, которое испытывают границы при своем перемещении. Это трение проявляется в необратимости изменения доменной структуры при циклическом изменении внешних напряжений: различном поведении суммарной деформации при увеличении напряжения и уменьшении напряжения и изменении его знака. Зависимость деформации x от величины механического напряжения s нелинейна и имеет вид петли гистерезиса (рис. 4). Форма петли гистерезиса x(s) зависит от температуры, частоты внешнего поля, количества примесей и дефектов материала [5].
По петле гистерезиса можно определить величину спонтанной деформации xсп и коэрцитивного напряжения sк , при котором происходят переключение доменов и переход кристалла в монодоменное состояние, сопровождающийся сменой знака xсп . Для сегнетоэластиков характерны большие величины xсп = 10- 3-10-1. Что же касается sк , то их значения изменяются в пределах от 105 Па для так называемых эластомягких кристаллов с узкой петлей гистерезиса до 108 Па для эластожестких кристаллов, характеризуемых широкой петлей гистерезиса.
Температурные зависимости основных свойств
На рис. 4 показано, как изменяется форма петли гистерезиса при изменении температуры и ее приближении к точке Кюри. Наглядно видно, что при нагревании сегнетоэластика спонтанная деформация xсп (которую находят продолжением участка насыщения петли гистерезиса до пересечения с осью x, как показано на кривой 1 ) уменьшается по величине и исчезает при температуре фазового перехода из сегнетоэластической в параэластическую фазу. В разных сегнетоэластиках ТK различается в широких пределах. Величина xсп наиболее сильно зависит от температуры в области фазового перехода и в самой точке перехода исчезает либо скачком (фазовый переход первого рода, например в BaTiO3), либо непрерывно (фазовый переход второго рода, например в тригидроселените калия). В последнем случае температурная зависимость xсп ниже ТК определяется выражением
где a0 и b - постоянные коэффициенты, ТK - температура Кюри.
Сильная температурная зависимость выше и ниже ТK наблюдается также у упругой податливости s и других констант сегнетоэластика. С приближением к точке Кюри упругая податливость s резко возрастает. В большинстве сегнетоэластиков зависимость упругой податливости от температуры при Т > ТК подчиняется закону Кюри-Вейсса:
где s? - неаномальная часть упругой податливости вдали от ТK , CW - константа Кюри-Вейсса, ТK - температура Кюри.
Для проверки выполнимости закона Кюри-Вейсса обычно строят зависимость обратной податливости 1/(s - s?) от Т - ТK , которая, согласно (4), должна представлять собой прямую линию.
Сильное изменение деформации образца под действием механических напряжений за счет смещения доменных границ обусловливает большую величину упругой податливости s многодоменного сегнетоэластика. Значение s тем больше, чем слабее закреплены доменные границы на дефектах и поверхности кристалла. Величина s в сегнетоэластиках, которые являются нелинейными механическими кристаллами, существенно зависит от величины механических напряжений.
ПРИМЕНЕНИЕ СЕГНЕТОЭЛАСТИКОВ
Подавляющее большинство технических применений сегнетоэластиков основано на использовании переключения ориентационных состояний кристалла или управления его доменной структурой, в частности управления положением доменных границ [6]. Для управления доменными структурами используют либо соответствующим образом ориентированное механическое напряжение в случае чистого сегнетоэластика, либо электрическое поле для сегнетоэластиков-сегнетоэлектриков.
Основные типы устройств на основе сегнетоэластиков можно разделить на три класса: оптические, акустоэлектронные и электромеханические.
Оптические применения сегнетоэластиков включают в себя оптические затворы и ключи, элементы логики и памяти, устройства отображения информации, дефлекторы и сканаторы. Кристаллы при этом должны быть прозрачными в видимом и ближнем ИК-диапазоне.
Оптические применения главным образом базируются на использовании двух оптических эффектов, характерных для сегнетоэластиков. Первый заключается в том, что оптические индикатрисы в соседних доменах обязательно разориентированы. Это значит, что переключение кристалла из одного ориентационного состояния в другое приводит к изменению соответствующих оптических свойств. Второй из оптических эффектов использует оптическую активность кристаллов, то есть способность кристалла поворачивать на некоторый угол плоскость поляризации света, и основан на особом свойстве доменных границ: при распространении поляризованного света вдоль доменной границы не происходит вращения плоскости поляризации света.
Первый эффект используется, например, в приборах, работающих по принципу оптического затвора (рис. 5, а). Здесь пластинка 1 сегнетоэластика-сегнетоэлектрика Gd2(MoO4)3 с напыленными на его грани прозрачными электродами расположена между скрещенными поляроидами (поляризатором 2 и анализатором 3 ), поэтому свет через оптический затвор не проходит. При переключении исходного направления поляризации на 180?, осуществляемом изменением полярности управляющего электрического напряжения Uупр = 200 В, происходит поворот оптической индикатрисы на 90? в плоскости, перпендикулярной вектору поляризации, что приводит к большому изменению двупреломления для света, распространяющегося вдоль полярной оси, и к максимальному прохождению света через анализатор 3. В этом устройстве электрически переключаемый сдвиг по фазе на четверть длины волны достигается с кристаллом толщиной 0,15 мм при длине волны света 500 нм, а двупреломление для начального состояния поляризации компенсируется четвертьволновой пластиной 4. Время переключения составляет 10- 3-10- 4 с. Важным преимуществом сегнетоэластических оптических затворов является высокая помехоустойчивость к вибрациям и электромагнитным полям.
Отличающиеся от свойств кристалла оптические свойства доменной стенки используются в приборах, получивших название сканаторов. Пример электрически управляемого сканатора приведен на рис. 5, б. Свет, пройдя через поляризатор, попадает на пластину сегнетоэластика-сегнетоэлектрика, содержащую два домена, разделенные плоской доменной стенкой. После прохождения через смежные домены свет изменит плоскость поляризации на 90?, вследствие чего будет задержан анализатором, установленным параллельно поляризатору. В то же время свет, прошедший через доменную стенку, не изменяет положения плоскости поляризации, поэтому не задерживается анализатором и попадает на линзу. Собирающая линза позволяет получить на экране изображение доменной стенки в виде светлой линии на темном фоне. Управляющим напряжением, приложенным к электродам сегнетоэластической пластины, можно изменять положение доменной стенки, перемещая ее от одного края кристалла до другого. При этом будет перемещаться по экрану изображение движущейся доменной стенки.
Среди известных применений сегнетоэластиков в электромеханических преобразователях, в частности в качестве стрикторов, позиционеров, пьезотрансформаторов и пр., в последние годы появилось направление, связанное с созданием на основе сегнетоэластиков чувствительных элементов датчиков давлений, усилий, ускорений. К числу других новых применений можно отнести аналоговую память, устройства цифровой техники и др.
Однако приведенные примеры применений сегнетоэластических материалов отнюдь не исчерпывают всех возможностей использования свойств, присущих этому классу диэлектриков.
ЗАКЛЮЧЕНИЕ
Заканчивая статью, еще раз обратим внимание читателя на важность исследования нового и наиболее широкого класса диэлектрических кристаллов-сегнетоэластиков как для науки, так и для многочисленных применений в различных областях техники.
Во-первых, в физике твердого тела появился отсутствовавший ранее раздел - физика сегнетоэластических кристаллов, то есть кристаллов с нелинейными механическими свойствами, обусловленными возникновением спонтанной деформации при фазовом переходе, разбиением кристалла на сегнетоэластические домены и динамикой доменных границ. Оказалось, что этот класс кристаллов является очень широким и включает кроме чистых собственных сегнетоэластиков также многочисленные кристаллы, обладающие помимо сегнетоэластических еще и сегнетоэлектрическими, суперионными свойствами, кристаллы с несоразмерными фазами, высокотемпературные сверхпроводники, фуллерены и др. Во-вторых, общность сегнетоэластических фазовых переходов с другими ферроическими фазовыми переходами позволяет использовать общий подход к анализу различных типов фазовых переходов. Таким образом, исследования сегнетоэластиков тесным образом связаны с одной из самых важных проблем в физике твердого тела - проблемой структурных фазовых переходов.
Что касается приложений, то здесь подвести итоги гораздо труднее из-за большого числа различных перспективных применений. По-видимому, наибольшие перспективы в настоящее время связаны с использованием сегнетоэластиков в управляемых акустоэлектронных устройствах обработки сигналов, а также с разработкой принципиально новых типов устройств. Для этого необходимы поиск и исследование новых сегнетоэластических кристаллов и совершенствование технологии их получения.
ЛИТЕРАТУРА
1. Шувалов Л.А. Сегнетоэластики // Изв. АН СССР. Сер. физ. 1979. Т. 43, ╧ 8. C. 1554-1560.
2. Гриднев С.А. Электрические кристаллы // Соросовский Образовательный Журнал. 1996. ╧ 7. C. 99-104.
3. Никитин С.А. Магнитные структуры в кристаллических и аморфных веществах // Там же. ╧ 11. C. 87-95.
4. Лихачев В.А. Эффект памяти формы // Там же. 1997. ╧ 3. C. 107-114.
5. Гриднев С.А., Шувалов Л.А., Кудряш В.И. Влияние дефектов на переключение чистого собственного сегнетоэластика KH3(SeO3)2 // Изв. АН СССР. Сер. физ. 1983. Т. 47, ╧ 3. С. 497-499.
6. Алексеев А.Н., Злоказов М.В., Осипов И.В. Применение сегнетоэластиков // Там же. С. 465-475.
Рецензент статьи Б.А. Струков
* * *
Станислав Александрович Гриднев, доктор физико-математических наук, профессор кафедры физики твердого тела Воронежского государственного технического университета. Область научных интересов - сегнетоэластики, сегнетоэлектрики, дипольные стекла, суперионики, высокотемпературные сверхпроводники. Автор более 200 статей и обзоров, 21 изобретения.