Новости науки "Русского переплета"
TopList Яндекс цитирования
Русский переплет
Портал | Содержание | О нас | Авторам | Новости | Первая десятка | Дискуссионный клуб | Чат Научный форум
Первая десятка "Русского переплета"
Темы дня:

Мир собирается объявить бесполётную зону в нашей Vselennoy! | Президенту Путину о создании Института Истории Русского Народа. |Нас посетило 40 млн. человек | Чем занимались русские 4000 лет назад? | Кому давать гранты или сколько в России молодых ученых?


Rambler's Top100
Портал | Содержание | О нас | Пишите | Новости | Книжная лавка | Голосование | Топ-лист | Регистрация | Дискуссия
Лучшие молодые
ученые России

Подписаться на новости

АВТОРСКИЕ НАУЧНЫЕ ОБОЗРЕНИЯ

"Физические явления на небесах" | "Terra & Comp" (Геология и компьютеры) | "Неизбежность странного микромира"| "Научно-популярное ревю"| "Биология и жизнь" | Теорфизика для малышей
Семинары - Конференции - Симпозиумы - Конкурсы

НАУКА В "РУССКОМ ПЕРЕПЛЕТЕ"
Проект поддержан Международной Соросовской Программой образования в области точных наук.
Новости из мира науки и техники
The Best of Russian Science and Technology
Страницу курирует проф. В.М.Липунов
"Русский переплет" зарегистрирован как СМИ. Свидетельство о регистрации в Министерстве печати РФ: Эл. #77-4362 от
5 февраля 2001 года. При полном или частичном использовании
материалов ссылка на www.pereplet.ru обязательна.

Тип запроса: "И" "Или"

22.02.2018
19:58

Нейросеть улучшила рендеринг меха

    Программисты разработали модель глобального освещения, предназначенную для реалистичного рендеринга меха и учитывающую его структурные отличия от волос, для которых уже существуют реалистичные модели. Разработчики также создали нейросеть, которая преобразует параметры меха в параметры рассеяния света для рендеринга. Создатели отмечают, что они добились на порядок большей скорости рендеринга при одинаковом качестве по сравнению с существующими методами, сообщается в докладе, который был представлен на конференции SIGGRAPH Asia.

    Обычно для реалистичного рендеринга применяют метод глобального освещения. Он заключается в том, что компьютер рассчитывает не только отражение света от основного источника, но и отражения света, который в свою очередь отразился от других поверхностей на сцене. Этот метод более похож на реальные процессы и дает более реалистичное изображение, но требует значительно больших вычислительных затрат или времени. Помимо этого современные системы рендеринга также используют подповерхностное рассеяние, которое применяется для моделирования поведения полупрозрачных материалов. При этом методе часть света не отражается от поверхности, а проникает в объем материала, многократно меняет направление и выходит обратно под другим углом и в другой точке.

    В случае с ворсистыми поверхностями компьютеру необходимо учитывать все эти процессы для моделирования взаимодействия тысяч отдельных объектов, для чего требуется большая вычислительная мощность или большое время рендернинга. Для того, чтобы упростить рендеринг таких объектов, разработаны некоторые аппроксимирующие методы, но они хорошо описывают взаимодействие света с человеческими волосами и не подходят для меха животных. Это обусловлено тем, что в человеческих волосах сердцевина мала по сравнению с общей толщиной волоса, а в мехе животных она может занимать большую его часть и сильно влиять на рассеяние света.

    Группа исследователей под руководством Рави Рамамурти (Ravi Ramamoorthi) из Калифорнийского университета в Сан-Диего разработали методику, подходящую как для рендеринга меха, так и для волос. Для моделирования отражения света между отдельными волосами меха и рассеяния внутри них разработчики выбрали метод дипольной диффузии, при котором вместо реального источника света используется два перпендикулярных точке входа в поверхность источника — один над ней, а второй под ней. Этот метод используется для упрощения вычислений при моделировании подповерхностного рассеяния.

    Поскольку рассеяние света зависит от структуры волоса и эта зависимость может быть сложной и нелинейной, исследователи создали модель, описываемую несколькими параметрами, а также нейросеть типа многослойного перцептрона для быстрого превращения параметров меха в параметры подповерхностного рассеяния для программы, непосредственно занимающейся отрисовкой модели. Также они проанализировали модель и поняли, что некоторые параметры не влияют на конечное изображение и их можно не использовать в качестве входных данных для нейросети.

    Для тренировки нейросети разработчики создали набор данных из тысячи изображений с разрешением 128 на 128 пикселей со случайными параметрами. После тренировки они сравнили свой метод с другими методами на одинаковых сценах и выяснили, что для сравнимого качества рендеринга ему требуется в несколько раз меньше времени при одинаковой вычислительной мощности.

    В прошлом году американские разработчики научили нейросеть убирать шум с рендеров кадров мультфильмов, смоделированных на компьютере. При этом нейросеть смога «дотянуть» качество изображения до рендера такой же сцены с использованием большего количества источников света и большей детализацией.

    По информации https://nplus1.ru/news/2018/02/22/fur

    Обозрение "Terra & Comp".

Помощь корреспонденту
Кнопка куратора
Добавить новость
Добавить новости
НАУКА В "РУССКОМ ПЕРЕПЛЕТЕ"

Если Вы хотите стать нашим корреспондентом напишите lipunov@sai.msu.ru

 

© 1999, 2000 "Русский переплет"
Дизайн - Алексей Комаров

Rambler's Top100


Rambler's Top100