Новости науки "Русского переплета"
TopList Яндекс цитирования
Русский переплет
Портал | Содержание | О нас | Авторам | Новости | Первая десятка | Дискуссионный клуб | Чат Научный форум
Первая десятка "Русского переплета"
Темы дня:

Мир собирается объявить бесполётную зону в нашей Vselennoy! | Президенту Путину о создании Института Истории Русского Народа. |Нас посетило 40 млн. человек | Чем занимались русские 4000 лет назад? | Кому давать гранты или сколько в России молодых ученых?


Rambler's Top100
Портал | Содержание | О нас | Пишите | Новости | Книжная лавка | Голосование | Топ-лист | Регистрация | Дискуссия
Лучшие молодые
ученые России

Подписаться на новости

АВТОРСКИЕ НАУЧНЫЕ ОБОЗРЕНИЯ

"Физические явления на небесах" | "Terra & Comp" (Геология и компьютеры) | "Неизбежность странного микромира"| "Научно-популярное ревю"| "Биология и жизнь" | Теорфизика для малышей
Семинары - Конференции - Симпозиумы - Конкурсы

НАУКА В "РУССКОМ ПЕРЕПЛЕТЕ"
Проект поддержан Международной Соросовской Программой образования в области точных наук.
Новости из мира науки и техники
The Best of Russian Science and Technology
Страницу курирует проф. В.М.Липунов
"Русский переплет" зарегистрирован как СМИ. Свидетельство о регистрации в Министерстве печати РФ: Эл. #77-4362 от
5 февраля 2001 года. При полном или частичном использовании
материалов ссылка на www.pereplet.ru обязательна.

Тип запроса: "И" "Или"

15.12.2017
16:00

Электрические свойства бактерий подчинились «стеклянным» закономерностям

    Электрическая проводимость и диэлектрическая проницаемость некоторых биологических веществ неожиданно хорошо согласуется с теорией, разработанной физиками для описания свойств аморфных материалов, например, стекол. Это совпадение обнаружили и объяснили ученые из России, Чехии и Германии, которые исследовали свойства трех органических веществ, в том числе внеклеточного материала электрогенной бактерии Shewanella oneidensis. Статья опубликована в Scientific Reports.

    Для описания свойств различных материалов физики используют несколько теорий. С одной стороны, электрическую проводимость металлов хорошо объясняет теория Друде, в которой электроны слабо взаимодействуют друг с другом и время от времени сталкиваются с кристаллической решеткой (так называемый «электронный газ»). Проводимость — это величина, обратная электрическому сопротивлению, и чем она больше, тем лучше вещество проводит электрический ток. С другой стороны, электрические свойства полупроводников и изоляторов можно объяснить, привлекая понятие запрещенной зоны энергии электрона. Однако существует еще один тип материалов, которые не попадают в эти две категории и, тем не менее, очень интересно ведут себя во внешнем электромагнитном поле. К таким материалам относятся, например, стекла, ионные проводники и аморфные полупроводники.

    Качественную теорию подобных материалов предложил почти сорок лет назад английский физик Анджей Джоншер (Andrzej Karol Jonscher). По этой теории, при больших температурах и низких частотах электроны ведут себя практически свободно, и можно применить теорию Друде. В результате мы получаем практически постоянную проводимость. Однако при повышении частоты до диапазона нескольких терагерц это приближение перестает работать, и проводимость начинает быстро расти (пропорционально некоторой степени частоты). То же самое происходит, если оставлять частоту постоянной, но постепенно охлаждать материал.

    Если же охлаждать образец и одновременно повышать частоту электрического тока, он перейдет в особый режим, называемый «почти постоянными потерями» (nearly constant loss, NCL). В этом случае проводимость пропорциональна частоте, а энергетические потери в материале практически постоянны. При этом оказывается, что свойства различных материалов очень похожи. Более того, если переписать зависимости в приведенных величинах (например, говорить не о проводимости, а об отношении проводимостей при переменном и постоянном токе), для всех веществ они будут одинаковыми. Это довольно интересное явление, его в свое время хорошо исследовали на примере аморфных материалов, и оно помогло лучше понять их строение и свойства.

    В данной работе группа ученых под руководством Константина Мотовилова и Бориса Горшунова (МФТИ) показала, что теория Джоншера так же хорошо описывает электрические свойства еще трех материалов, на этот раз органических. Два из них — белки бычий сывороточный альбумин (BSA) и цитохром C (CytC) — получают из крови крупного рогатого скота. Структурные, физические и химические свойства этих веществ хорошо исследованы, и ученые использовали их в качестве образца.

    Кроме того, они изучили внеклеточный матрикс (extracellular matrix and filaments, EMF) бактерии Shewanella oneidensis MR-1, которая может вырабатывать довольно большой электрический ток. Эта бактерия используется во многих экспериментах, изучающих альтернативные источники энергии, и поэтому ее свойства представляют особенный интерес. Например, в 2010 году группа ученых из США и Канады показала, что некоторые части этой бактерии ведут себя очень похоже на полупроводники p-типа. Однако электрические свойства Shewanella oneidensis до сих пор были изучены не очень хорошо. В данной статье ученые постарались устранить этот пробел.

    В ходе эксперимента ученые сняли зависимость проводимости и диэлектрической проницаемости этих веществ в диапазоне частот от одного до 1014 герц и для температур от 10 до 310 Кельвинов. Кроме того, они измерили проводимость EMF при постоянном токе в диапазоне 270 — 310 Кельвинов, а также определили удельные теплоемкости всех трех веществ.

    Для этого исследователи сначала спрессовали вещества в таблетки диаметром около одного сантиметра. Затем они подсоединили к плоским сторонам таблеток электроды и пропускали через них ток, чтобы измерить электрическую проводимость и диэлектрическую проницаемость на частотах от одного до трехсот миллионов герц. Для более высоких частот такой подход не работает, поэтому в диапазоне 30 — 1500 гигагерц ученые просто светили на таблетки электромагнитными волнами и измеряли, какая их часть отражается обратно — зная коэффициент отражения, можно восстановить величину проводимости и диэлектрической проницаемости материала. В промежуточном диапазоне измерения не проводились.

    В результате оказалось, что при комнатной температуре проводимость EMF практически постоянна, а при увеличении частоты становится пропорциональна некоторой ее степени, близкой к единице. У цитохрома C такая зависимость наблюдается только при относительно низких частотах и высоких температурах, у альбумина не наблюдается вовсе. Это значит, что механизмы проводимости в этих веществах отличаются. Скорее всего, в EMF при комнатной температуре есть почти свободные заряды (как в теории Друде, о которой мы говорили в самом начале), а в альбумине и цитохроме C нет, и поэтому они находятся в режиме «почти постоянных потерь». Это дополнительно подтверждает тот факт, что мнимая часть коэффициента диэлектрической проницаемости (то есть потери энергии) для альбумина и цитохрома оставалась постоянной во всем диапазоне исследуемых температур.

    Эту зависимость можно объяснить на уровне структур каждого из трех веществ. И цитохром C, и альбумин являются обычными белками, и концентрация ионов в них не очень велика (хотя и не равна нулю). Теорию Друде к ним применить нельзя, зато срабатывает другое приближение теории Джоншера. С другой стороны, молекулы EMF содержат гемы — области с повышенной (около 2,7 процентов) концентрацией металлических ионов. Поэтому образование свободных зарядов происходит в ней гораздо легче. Конечно, в действительности все гораздо сложнее, и необходимо учитывать присутствие свободной воды в веществах, а также другие факторы. Например, в молекулах EMF содержится довольно много свободной воды, и при низких температурах (20 Кельвинов) и частотах порядка нескольких сотен гигагерц ее проводимость начинает расти квадратично. Этот рост, вообще говоря, в теорию Джоншера не укладывается.

    Ученые уже не в первый раз пытаются применить физические теории для описания биологических явлений. Раньше этот подход уже помогал им получить биологический переключатель из молекул ДНК и собрать микроскопических плюшевых мишек. Кроме того, напомним, что последнюю Нобелевскую премию по химии также присудили за исследование, объединяющее разные области науки — разработку метода, позволяющего определить структуру белков и макромолекулярных комплексов с разрешением, близким к атомарному.

    По информации https://nplus1.ru/news/2017/12/14/physics-biology

    Обозрение "Terra & Comp".

Помощь корреспонденту
Кнопка куратора
Добавить новость
Добавить новости
НАУКА В "РУССКОМ ПЕРЕПЛЕТЕ"

Если Вы хотите стать нашим корреспондентом напишите lipunov@sai.msu.ru

 

© 1999, 2000 "Русский переплет"
Дизайн - Алексей Комаров

Rambler's Top100


Rambler's Top100