Новости науки "Русского переплета"
TopList Яндекс цитирования
Русский переплет
Портал | Содержание | О нас | Авторам | Новости | Первая десятка | Дискуссионный клуб | Чат Научный форум
Первая десятка "Русского переплета"
Темы дня:

Мир собирается объявить бесполётную зону в нашей Vselennoy! | Президенту Путину о создании Института Истории Русского Народа. |Нас посетило 40 млн. человек | Чем занимались русские 4000 лет назад? | Кому давать гранты или сколько в России молодых ученых?


Rambler's Top100
Портал | Содержание | О нас | Пишите | Новости | Книжная лавка | Голосование | Топ-лист | Регистрация | Дискуссия
Лучшие молодые
ученые России

Подписаться на новости

АВТОРСКИЕ НАУЧНЫЕ ОБОЗРЕНИЯ

"Физические явления на небесах" | "Terra & Comp" (Геология и компьютеры) | "Неизбежность странного микромира"| "Научно-популярное ревю"| "Биология и жизнь" | Теорфизика для малышей
Семинары - Конференции - Симпозиумы - Конкурсы

НАУКА В "РУССКОМ ПЕРЕПЛЕТЕ"
Проект поддержан Международной Соросовской Программой образования в области точных наук.
Новости из мира науки и техники
The Best of Russian Science and Technology
Страницу курирует проф. В.М.Липунов
"Русский переплет" зарегистрирован как СМИ. Свидетельство о регистрации в Министерстве печати РФ: Эл. #77-4362 от
5 февраля 2001 года. При полном или частичном использовании
материалов ссылка на www.pereplet.ru обязательна.

Тип запроса: "И" "Или"

21.09.2017
14:19

Алмазный «револьвер» защитит линии квантовой связи

    Исследователи из Московского физико-технического института и Университета Зигена объяснили механизм генерации одиночных фотонов в алмазных диодах. Результаты работы, опубликованной в одном из ведущих физических журналов Physical Review Applied, открывают путь к созданию быстрых однофотонных источников для квантовых линий связи и квантовых компьютеров будущего.

    Работа устройств на уровне одиночных фотонов открывает возможность создания принципиально новых систем для коммуникаций и вычислений, начиная от аппаратных генераторов истинно случайных чисел до квантовых компьютеров. Пожалуй, самой востребованной квантовой технологией сегодня является квантовая связь. Методы квантовой криптографии, опирающиеся на законы квантовой физики, позволяют защитить передаваемые данные так, что их фундаментально невозможно будет перехватить, не важно какими устройствами обладает злоумышленник, пусть даже и сверхмощным квантовым компьютером. Однако практическая реализация линий квантовой связи и других квантовых устройств требует эффективной генерации одиночных фотонов.

    С практической точки зрения необходимо, чтобы источники одиночных фотонов работали при комнатной температуре и от электрической накачки, т. е., проще говоря, в нормальных условиях и от батарейки. Несмотря на очевидность этих требований, соблюсти их оказывается крайне сложно. Во-первых, все квантовые системы не любят высокие температуры, а это означает, что для их охлаждения требуется холодильник или криостат, охлаждающий их по крайней мере до температуры жидкого гелия, а то и ещё ниже — до нескольких милликельвинов, что составляет приблизительно −273 градуса по шкале Цельсия. Хотя использование таких установок у физиков уже вошло в привычку, едва ли в ближайшее время удастся создать подобный холодильник стоимостью в несколько долларов, а значит стоит забыть о массовом использовании подобных квантовых систем. Во-вторых, сама концепция квантовых систем подразумевает, что они практически не взаимодействуют с окружающим миром, по крайней мере неконтролируемо. Примером такой системы служит одиночный атом в камере с разреженным газом. Тем не менее, несмотря на то, что его взаимодействие с окружающей средой практически отсутствует, физики могут управлять его электронными состояниями, облучая камеру лазером и тем самым заставляя атом излучать одиночные фотоны. Однако накачивать электрически такую квантовую систему не представляется возможным. Активные исследования в области квантовой оптики и квантовой электроники в последние два десятилетия показали, что не только атомам газов, но и даже полупроводниковым структурам, таким как квантовые точки, не под силу справиться с задачей эффективной работы от электрической накачки при комнатной температуре, в то время как многие другие другие материалы просто не проводят ток.

    Выходом из сложившейся тупиковой ситуации довольно неожиданно стал алмаз — материал с очень необычными свойствами на стыке полупроводников и диэлектриков. Оказалось, что в алмазе центры окраски — точечные дефекты в кристаллической решётке, возникающие при случайном попадании или направленной имплантации в алмаз посторонних атомов — могут выступать в роли квантовых систем и показывать превосходные излучательные характеристики. Более того, удалось продемонстрировать, что при пропускании тока эти квантовые системы могут излучать одиночные фотоны. Однако физика происходящего процесса была неизвестна и не было понятно, что нужно делать, чтобы создать на основе центров окраски быстрые и эффективные источники.

    В своей работе физики из МФТИ и Университета Зигена установили механизм однофотонного излучения NV-центров в алмазе при пропускании тока и определили, что влияет на динамику излучения фотонов. Согласно их исследованиям, процесс можно разделить на три стадии: (1) захват электрона центром окраски, (2) захват дырки (или, что то же, отдача электрона), (3) переход между электронными уровнями в центре окраски, которые вместе формируют механизм, похожий на принцип действия револьвера. Представим, что выстрел — это излучение одиночного фотона. Чтобы выстрелить, нужно сначала большим пальцем взвести курок (дефект должен захватить электрон). Затем нужно нажать на спусковой крючок. Это запускает спусковой механизм, и курок, обретя импульс, ударяет по капсюлю патрона. Именно этому «обратному» ходу курка и соответствует захват дырки центром окраски в алмазе. Далее заряд в капсюле взрывается, поджигает порох и под действием пороховых газов вылетает пуля. Аналогичным образом дырка в центре окраски испытывает переходы между возбуждёнными уровнями и основным уровнем, в результате чего происходит эмиссия фотона. Затем всё повторяется по тому же сценарию за одним лишь исключением: нам не нужен новый патрон, центр окраски может излучить сколько угодно фотонов по одному за раз.

    На практике очень важно получать фотоны именно в моменты времени, когда они нужны, поскольку после генерации фотоны улетают со скоростью света. «Вспомните ковбойские дуэли в вестернах. Например, два стрелка начинают стрелять строго по бою часов. Побеждает обычно тот, кто выстреливает первым. Ценой за промедление является жизнь. Точно так же для квантовых устройств жизненно важно генерировать фотоны «по требованию» в строго определённые моменты времени», — говорит Дмитрий Федянин. В своей работе исследователи показывают, что определяет время отклика алмазного однофотонного источника, т. е. через какое время он может излучить фотон, и какова вероятность испустить ещё один фотон через время τ после испускания первого. Оказывается, что этими временами можно управлять и на порядки улучшать их как путём изменения характеристик алмаза, например при помощи легирования, так и контролируя концентрации инжектированных в алмаз носителей заряда. Кроме того, по словам Дмитрия Федянина, помещая центр окраски в разных областях алмазного диода, можно управлять начальным состоянием центра окраски, подобно тому как стрелки предварительно взводят курок, чтобы быстрее выстрелить, или ставят револьвер на предохранитель.

    Предложенная исследователями физическая модель отвечает на фундаментальные вопросы о поведении центров окраски в алмазе. Разработанная теория не только качественно объясняет, но и количественно воспроизводит недавние экспериментальные результаты. Это открывает путь к созданию практичных источников однофотонного излучения с заданными характеристиками, что необходимо для реализации устройств квантовой информации, таких как защищённые линии связи на основе квантовой криптографии.

    По информации https://scientificrussia.ru/news/almaznyj-revolver-zashchitit-linii-kvantovoj-svyazi

    Обозрение "Terra & Comp".

Помощь корреспонденту
Кнопка куратора
Добавить новость
Добавить новости
НАУКА В "РУССКОМ ПЕРЕПЛЕТЕ"

Если Вы хотите стать нашим корреспондентом напишите lipunov@sai.msu.ru

 

© 1999, 2000 "Русский переплет"
Дизайн - Алексей Комаров

Rambler's Top100


Rambler's Top100