Ученые из Шанхая (Китай), используя численные методы, нашли 152 новых частных периодических решений классической (иначе — ньютоновской) задачи трех тел. Препринт исследования имеется в редакции «Ленты.ру».
Всего численно специалисты получили 164 периодических решений. Из них двенадцать включают в себя ранее известные решения классической задачи трех тел, в частности, решение Мура (найдено в 1993 году) и одиннадцать — Шувакова-Дмитрашиновича (2003 год).
Движение трех тел, имеющих одинаковые массы и нулевые моменты импульса, происходит в двумерной плоскости с начальными координатами (-1, 0), (1, 0), (0, 0) и начальными скоростями (v1, v2), (v1, v2), (-2v1, -2v2). Ученые перечислили 164 решений (указали численные значения v1 и v2 для каждой тройки тел).
Для нахождения 164 периодических решений ученые основывались на подходе Шувакова-Дмитрашиновича, в частности, полном переборе.
Задача трех тел состоит в определении положения трех тел, движение которых подчиняется закону Ньютона, по известным начальным условиям (координатам и скоростям). Первые три решения нашел Леонард Эйлер в 1767 году, в 1892–1899 годах Анри Пуанкаре доказал, что существует бесконечно много частных решений данной задачи.
По информации https://lenta.ru/news/2017/05/15/152/
Обозрение "Terra & Comp".