Новости науки "Русского переплета"
TopList Яндекс цитирования
Русский переплет
Портал | Содержание | О нас | Авторам | Новости | Первая десятка | Дискуссионный клуб | Чат Научный форум
Первая десятка "Русского переплета"
Темы дня:

Мир собирается объявить бесполётную зону в нашей Vselennoy! | Президенту Путину о создании Института Истории Русского Народа. |Нас посетило 40 млн. человек | Чем занимались русские 4000 лет назад? | Кому давать гранты или сколько в России молодых ученых?


Rambler's Top100
Портал | Содержание | О нас | Пишите | Новости | Книжная лавка | Голосование | Топ-лист | Регистрация | Дискуссия
Лучшие молодые
ученые России

Подписаться на новости

АВТОРСКИЕ НАУЧНЫЕ ОБОЗРЕНИЯ

"Физические явления на небесах" | "Terra & Comp" (Геология и компьютеры) | "Неизбежность странного микромира"| "Научно-популярное ревю"| "Биология и жизнь" | Теорфизика для малышей
Семинары - Конференции - Симпозиумы - Конкурсы

НАУКА В "РУССКОМ ПЕРЕПЛЕТЕ"
Проект поддержан Международной Соросовской Программой образования в области точных наук.
Новости из мира науки и техники
The Best of Russian Science and Technology
Страницу курирует проф. В.М.Липунов
"Русский переплет" зарегистрирован как СМИ. Свидетельство о регистрации в Министерстве печати РФ: Эл. #77-4362 от
5 февраля 2001 года. При полном или частичном использовании
материалов ссылка на www.pereplet.ru обязательна.

Тип запроса: "И" "Или"

10.04.2016
16:03

Шумеры оспорили крупнейшее достижение древнегреческих математиков

    Бенджамин и Эрик Альтшулеры (соответственно город Нью-Йорк и штат Пенсильвания, США) показали, что вавилоняне (шумеры и аккадцы) на тысячу лет раньше индийцев и греков могли доказать иррациональность числа, равного квадратного корню из двух. Об этом авторы сообщили в публикации на сайте arXiv.org.

    Иррациональным называется вещественное число, которое не является рациональным (то есть не может быть представлено в виде дроби, в которой числитель — целое число, а знаменатель — натуральное). Квадратный корень из двух представляет собой простейший пример иррационального числа.

    Доказательство этого факта считается одним из крупных достижений математики Древней Греции (оно датируется 570-495 годы до нашей эры и приписывается пифагорейцам). Индийские математики могли на 150-200 лет раньше греков доказать иррациональность квадратных корней из 2 и 21.

    Исследование Альтшулеров показало, что жрецы Вавилона уже в 1800-1600 годах до нашей эры (более чем на тысяу лет раньше греков и индийцев) владели методами, позволяющими доказать иррациональность квадратного корня из двух. К своим выводам авторы пришли, рассмотрев глиняные таблички YBC 7289 и BM 15285, отображающие приближенный расчет квадратного корня из двух.

    Первая табличка позволяла получить значение квадратного корня из двух с точностью до шестого знака после запятой (при помощи расчета диагонали квадрата). Вторая отображала геометрический способ проверки иррациональности квадратного корня из двух, а также содержит один из геометрических способов доказательства теоремы Пифагора. В препринте Альтшулеры ссылались на известные ранее исследования вавилонских глиняных табличек, в которых также заявлялось о возможном владении древней цивилизацией методами доказательства иррациональности квадратного корня из двух. Авторы не знают, отводили вавилоняне явное значение иррациональности этого числа или воспринимали его неявно.

    По информации https://lenta.ru/news/2016/04/10/babylon/

    Обозрение "Terra & Comp".

Помощь корреспонденту
Кнопка куратора
Добавить новость
Добавить новости
НАУКА В "РУССКОМ ПЕРЕПЛЕТЕ"

Если Вы хотите стать нашим корреспондентом напишите lipunov@sai.msu.ru

 

© 1999, 2000 "Русский переплет"
Дизайн - Алексей Комаров

Rambler's Top100


Rambler's Top100