Новости науки "Русского переплета" Rambler's Top100
Портал | Содержание | О нас | Пишите | Новости | Книжная лавка | Голосование | Топ-лист | Регистрация | Дискуссия
Лучшие молодые
ученые России

Подписаться на новости

АВТОРСКИЕ НАУЧНЫЕ ОБОЗРЕНИЯ

"Физические явления на небесах" | "Terra & Comp" (Геология и компьютеры) | "Неизбежность странного микромира"| "Научно-популярное ревю"| "Биология и жизнь" | Теорфизика для малышей
Семинары - Конференции - Симпозиумы - Конкурсы

НАУКА В "РУССКОМ ПЕРЕПЛЕТЕ"
Проект поддержан Международной Соросовской Программой образования в области точных наук.
Новости из мира науки и техники
The Best of Russian Science and Technology
Страницу курирует проф. В.М.Липунов
"Русский переплет" зарегистрирован как СМИ. Свидетельство о регистрации в Министерстве печати РФ: Эл. #77-4362 от
5 февраля 2001 года. При полном или частичном использовании
материалов ссылка на www.pereplet.ru обязательна.

Тип запроса: "И" "Или"

20.02.2021
15:26

Цианобактерии выжили на марсианских ресурсах

    Немецкие исследователи показали, что синезеленые бактерии могут развиваться при низком давлении газовой смеси из азота и углекислого газа и одновременно использовать имитирующую поверхность Марса смесь минералов как источник других необходимых для жизни элементов. Авторы опубликованной в опубликованной в Frontiers Microbiology работы сконструировали биореактор, который позволил поддерживать низкое давление в системе, и показали возможность роста биомассы в экстремальных условиях.

    Международная координационная группа по исследованию космического пространства (ISECG), в состав которой входит более 20 космических агенств (в том числе и Роскосмос), называет пилотируемые миссии по освоению Марса одной из общих целей на 30-е годы. И несмотря на то, что сроки исполнения еще, вероятно, будут пересмотрены, такие миссии скорее всего состоятся в ближайшие десятилетия.

    Одна из сложных задач в планировании миссий – придумать, как снабжать команды расходными материалами. Для первых полетов все необходимое может поставляться с Земли, но затраты на запуск, необходимое время для доставки и риск неудач заставляют задуматься о производстве всего необходимого на месте – на Марсе. В этом могут помочь возобновляемые биологические системы. Однако даже повторное использование доставленных с Земли материалов будет сильно ограничивать работу биосистем и приводить к истощению доступных химических элементов.

    Системы, основанные на синезеленых бактериях, могли бы снизить зависимость миссий от Земли: эти бактерии умеют пользоваться углекислым газом и молекулярным азотом как источниками углерода и азота соответственно. В длинных нитчатых колониях цианобактерий среди способных к фотосинтезу бактерий с некоторой периодичностью встречаются гетероцисты – клетки, которые осуществляют фиксацию азота. Оба необходимых газа – азот и углекислый газ – присутствуют в составе марсианской атмосферы, и смесь газов в нужных пропорциях можно создать на месте. Воду также можно добыть на Марсе, остальные необходимые в меньших количествах элементы встречаются в грунте. Культуры цианобактерий могут производить некоторые вещества, используемые напрямую (кислород, белок для питания), а также поддерживать развитие других организмов, которые, в свою очередь, могут разнообразить производимую биомассу.

    Использование газов под низким давлением выглядит привлекательной для инженеров идеей: это помогло бы обеспечить надежность системы. Например, снижение разницы давлений между атмосферой и системой позволило бы уменьшить риск протечки или использовать более удобные материалы (в том числе прозрачные, чтобы пропускать необходимый для фотосинтеза свет). Однако цианобактерии не могут развиваться просто в условиях марсианской атмосферы. Во-первых, на Марсе слишком низкое давление, всего 6-11 гектопаскаль, что несовместимо с развитием бактерий в целом. Во-вторых, доля молекулярного азота в марсианской атмосфере слишком мала (2,8 процента) для того, чтобы синезеленые бактерии могли получать весь необходимый азот из газовой смеси. Также известно, что бактерии не могут развиваться в марсианском грунте при давлении, схожим с марсианским, но растут при его повышении. Возникает задача: приблизить состав и давление газа в биореакторе к марсианской атмосфере, используя грунт в качестве источника фосфора, серы, калия и других необходимых элементов.

    Ученые из Бременского университета под руководством Марка Авила (Marc Avila) создали биореактор, чтобы изучить, как повлияет газовая смесь (96 процентов азота и 4 процента углекислого газа) с общим давлением в 100 гектопаскаль на рост цианобактерий. Биореактор состоял из девяти сосудов, в каждом из которых независимо контролировалось давление и состав газовой смеси, температура, подсветка и скорость перемешивания.

    Исследователи ставили эксперименты на синезеленых бактериях рода Anabaena. Сначала их культивировали в биореакторе на протяжении десяти дней в стандартной питательной среде, и сравнивали рост бактерий при обычных (земных) атмосферных условиях и при подаче газовой смеси с низким давлением. Полученная в двух условиях концентрация биомассы лишь незначительно отличалась друг от друга (0,33±0,03 грамм сухой массы на литр против 0,36±0,03).

    Однако исследователи нашли отличия в физиологии бактериальных клеток: например, уменьшилась дистанция между соседними гетероцистами в колониях, она составила 20,9±1,7 вегетативных клеток. Между гетероцистами в колониях, которые росли в обычных условиях, расстояние было 31,2±4,0 клеток. На четыре процента уменьшилась и доля растворимых белков в биомассе. Теоретически, это может отразиться на питательных свойствах, если использовать цианобактерии как питательный субстрат.

    Далее авторы работы проверили, смогут ли бактерии расти и в необычных атмосферных условиях и одновременно использовать марсианский грунт в качестве источника других необходимых питательных веществ. В качестве имитации марсианского грунта использовалась смесь, созданная на основе хорошо охарактеризованного образца, который был получен при помощи марсохода «Кьюриосити».

    Цианобактерии прибавили в весе в таких условиях, хотя и заметно меньше, чем те, которые росли в стандартной питательной среде. Рост оценили по концентрации хлорофилла: 5,2±0,2 микрограмма хлорофилла против 102,9±5,5 микрограмм хлорофилла на одну чашку Петри (объем – около 4 миллитров).

    Кроме того, исследователи дали биомассу, полученную в результате экспериментов, кишечной палочке E. coli в качестве питательного субстрата. Несмотря на отмеченные физиологические изменения в колониях цианобактерий, кишечная палочка смогла вырасти также хорошо, как и в стандартной питательной среде. Эта модель показывает, что культивированные в необычных условиях синезеленые бактерии могут быть источником питательных веществ для тех существ, которые не могут сами фотосинтезировать и фиксировать азот.

    Авторы работы отмечают, что сниженный рост цианобактерий при использовании грунта, а не питательной среды, можно объяснить нехваткой света: вероятно, гранулы грунта мешали хорошо освещать сосуды. Кроме того, повлиять могла и скорость высвобождения химических веществ из твердых гранул. Исследователи предполагают, что методами синтетической биологии и метаболической инженерии в будущем можно будет улучшить эффективность роста цианобактерий в подобных условиях.

    Ранее ученые показывали, что бактерии могут добывать редкоземельные металлы из грунта при давлении, схожем с марсианским. Тем временем продолжаются беспилотные исследовательские миссии по изучению Марса: марсоход NASA «Персеверанс» совершил успешную посадку.

    По информации https://nplus1.ru/news/2021/02/20/bioreactor-for-Mars

    Обозрение "Terra & Comp".

Помощь корреспонденту
Кнопка куратора
Добавить новость
Добавить новости
НАУКА В "РУССКОМ ПЕРЕПЛЕТЕ"

Если Вы хотите стать нашим корреспондентом напишите lipunov@sai.msu.ru

 

© 1999, 2000 "Русский переплет"
Дизайн - Алексей Комаров

Rambler's Top100